Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Am Nat ; 204(2): 191-199, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008836

RESUMO

AbstractThe sub-Antarctic terrestrial ecosystems survive on isolated oceanic islands in the path of circumpolar currents and winds that have raged for more than 30 million years and are shaped by climatic cycles that surpass the tolerance limits of many species. Surprisingly little is known about how these ecosystems assembled their native terrestrial fauna and how such processes have changed over time. Here, we demonstrate the patterns and timing of colonization and speciation in the largest and dominant arthropod predators in the eastern sub-Antarctic: spiders of the genus Myro. Our results indicate that this lineage originated from Australia before the Plio-Pleistocenic glacial cycles and underwent an adaptive radiation on the Crozet archipelago, from where one native species colonized multiple remote archipelagos via the Antarctic circumpolar current across thousands of kilometers. The results indicate limited natural connectivity between terrestrial macroinvertebrate faunas in the eastern sub-Antarctic and partial survival of repeated glaciations in the Plio-Pleistocene. Furthermore, our findings highlight that by integrating arthropod taxa from multiple continents, the climatically more stable volcanic Crozet archipelago played a critical role in the evolution and distribution of arthropod life in the sub-Antarctic.


Assuntos
Distribuição Animal , Evolução Biológica , Aranhas , Animais , Regiões Antárticas , Aranhas/fisiologia , Ecossistema , Comportamento Predatório , Filogenia , Artrópodes/fisiologia
2.
Proc Biol Sci ; 291(2021): 20232926, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628117

RESUMO

Seasonal migration is an underappreciated driver of animal diversification. Changes in migratory behaviour may favour the establishment of sedentary founder populations and promote speciation if there is sufficient reproductive isolation between sedentary and migratory populations. From a systematic literature review, we here quantify the role of migratory drop-off-the loss of migratory behaviour-in promoting speciation in birds on islands. We identify at least 157 independent colonization events likely initiated by migratory species that led to speciation, including 44 cases among recently extinct species. By comparing, for all islands, the proportion of island endemic species that derived from migratory drop-off with the proportion of migratory species among potential colonizers, we showed that seasonal migration has a larger effect on island endemic richness than direct dispersal. We also found that the role of migration in island colonization increases with the geographic isolation of islands. Furthermore, the success of speciation events depends in part on species biogeographic and ecological factors, here positively associated with greater range size and larger flock sizes. These results highlight the importance of shifts in migratory behaviour in the speciation process and calls for greater consideration of migratory drop-off in the biogeographic distribution of birds.


Assuntos
Aves , Animais , Filogenia
3.
Mol Ecol ; 33(6): e17285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288563

RESUMO

Understanding how spatial patterns of mating and gene flow respond to habitat loss and geographical isolation is a crucial aspect of forest fragmentation genetics. Naturally fragmented riparian tree populations exhibit unique characteristics that significantly influence these patterns. In this study, we investigate mating patterns, pollen-mediated gene flow, and genetic diversity in relict populations of Frangula alnus in southern Spain by testing specific hypotheses related to the riparian habitat. We employ a novel approach that combines paternity analysis, particularly suited for small and isolated populations, with complex network theory and Bayesian models to predict mating likelihood among tree pairs. Our findings reveal a prevalence of short-distance pollination, resulting in spatially driven local mating clusters with a distinct subset of trees being highly connected in the mating network. Additionally, we observe numerous pollination events over distances of hundreds of metres and considerable pollen immigration. Local neighbourhood density is the primary factor influencing within-population mating patterns and pollen dispersal; moreover, mating network properties reflect the population's size and spatial configuration. Conversely, among-population pollen dispersal is mainly determined by tree size, which influences floral display. Our results do not support a major role of directional pollen dispersal in longitudinal trends of genetic diversity. We provide evidence that long-term fragmented tree populations persist in unique environments that shape mating patterns and impose constraints to pollen-mediated gene flow. Nevertheless, even seemingly strongly isolated populations can maintain functional connectivity over extended periods, especially when animal-mediated mating networks promote genetic diversity, as in this riparian tree species.


Assuntos
Genética Populacional , Repetições de Microssatélites , Animais , Teorema de Bayes , Repetições de Microssatélites/genética , Reprodução/genética , Polinização/genética , Fluxo Gênico , Variação Genética/genética
4.
Mol Phylogenet Evol ; : 108176, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128794

RESUMO

Silkmoths (Bombycidae) have a disjunct distribution predominantly in the Southern Hemisphere and Asia. Here we reconstruct the phylogenetic history of the family to test competing hypotheses on their origin and assess how vicariance and long-distance dispersal shaped their current distribution. We sequenced up to 5,074 base pairs from six loci (COI, EF1-α, wgl, CAD, GAPDH, and RpS5) to infer the historical biogeography of Bombycidae. The multilocus dataset covering 20 genera (80 %) of the family, including 17 genera (94 %) of Bombycinae and 3 genera (43 %) of Epiinae, was used to estimate phylogenetic patterns, divergence times and biogeographic reconstruction. Dating estimates extrapolated from secondary calibration sources indicate the Bombycidae stem-group originated approximately 64 Mya. The subfamilies Epiinae (South America) and Bombycinae (Australia, Asia, East Palaearctic, and Africa) were reciprocally monophyletic, diverging at c. 56 Mya (95 % credibility interval: 66-46 Mya). The 'basal' lineage of Bombycinae - Gastridiota + Elachyophtalma - split from the rest of Bombycinae c. 53 Mya (95 % credibility interval: 63-43 Mya). Gastridiota is a monobasic genus with a relictual distribution in subtropical forests of eastern Australia. The Oriental and African genera comprised a monophyletic group: the Oriental region was inferred to have been colonized from a long-distance dispersal event from Australia to South-East Asia c. 53 Mya or possibly later (c. 36-26 Mya); Africa was subsequently colonized by dispersal from Asia c. 16 Mya (95 % credibility interval: 21-12 Mya). Based on the strongly supported phylogenetic relationships and estimates of divergence times, we conclude that Bombycidae had its origin in the fragment of Southern Gondwana consisting of Australia, Antarctica and South America during the Paleocene. The disjunction between South America (Epiinae) and Australia (Bombycinae) is best explained by vicariance in the Eocene, whereas the disjunct distribution in Asia and Africa is best explained by more recent dispersal events.

5.
Glob Chang Biol ; 30(6): e17382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923652

RESUMO

Climate change poses an existential threat to coral reefs. A warmer and more acidic ocean weakens coral ecosystems and increases the intensity of hurricanes. The wind-wave-current interactions during a hurricane deeply change the ocean circulation patterns and hence potentially affect the dispersal of coral larvae and coral disease agents. Here, we modeled the impact of major hurricane Irma (September 2017) on coral larval and stony coral tissue loss disease (SCTLD) connectivity in Florida's Coral Reef. We coupled high-resolution coastal ocean circulation and wave models to simulate the dispersal of virtual coral larvae and disease agents between thousands of reefs. While being a brief event, our results suggest the passage of hurricane Irma strongly increased the probability of long-distance exchanges while reducing larval supply. It created new connections that could promote coral resilience but also probably accelerated the spread of SCTLD by about a month. As they become more intense, hurricanes' double-edged effect will become increasingly pronounced, contributing to increased variability in transport patterns and an accelerated rate of change within coral reef ecosystems.


Assuntos
Antozoários , Mudança Climática , Recifes de Corais , Tempestades Ciclônicas , Antozoários/fisiologia , Animais , Florida , Larva/fisiologia , Larva/crescimento & desenvolvimento , Modelos Teóricos
6.
Ann Bot ; 133(5-6): 697-710, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38230804

RESUMO

BACKGROUND AND AIMS: The staghorn fern genus Platycerium is one of the most commonly grown ornamental ferns, and it evolved to occupy a typical pantropical intercontinental disjunction. However, species-level relationships in the genus have not been well resolved, and the spatiotemporal evolutionary history of the genus also needs to be explored. METHODS: Plastomes of all the 18 Platycerium species were newly sequenced. Using plastome data, we reconstructed the phylogenetic relationships among Polypodiaceae members with a focus on Platycerium species, and further conducted molecular dating and biogeographical analyses of the genus. KEY RESULTS: The present analyses yielded a robustly supported phylogenetic hypothesis of Platycerium. Molecular dating results showed that Platycerium split from its sister genus Hovenkampia ~35.2 million years ago (Ma) near the Eocene-Oligocene boundary and began to diverge ~26.3 Ma during the late Oligocene, while multiple speciation events within Platycerium occurred during the middle to late Miocene. Biogeographical analysis suggested that Platycerium originated in tropical Africa and then dispersed eastward to southeast Asia-Australasia and westward to neotropical areas. CONCLUSIONS: Our analyses using a plastid phylogenomic approach improved our understanding of the species-level relationships within Platycerium. The global climate changes of both the Late Oligocene Warming and the cooling following the mid-Miocene Climate Optimum may have promoted the speciation of Platycerium, and transoceanic long-distance dispersal is the most plausible explanation for the pantropical distribution of the genus today. Our study investigating the biogeographical history of Platycerium provides a case study not only for the formation of the pantropical intercontinental disjunction of this fern genus but also the 'out of Africa' origin of plant lineages.


Assuntos
Filogenia , Filogeografia , Plastídeos , Polypodiaceae , Polypodiaceae/genética , Polypodiaceae/classificação , Plastídeos/genética , Evolução Biológica , África , Gleiquênias/genética , Gleiquênias/classificação , Evolução Molecular
7.
Am J Bot ; 111(5): e16348, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38764292

RESUMO

PREMISE: Shared geographical patterns of population genetic variation among related species is a powerful means to identify the historical events that drive diversification. The Sphagnum capillifolium complex is a group of closely related peat mosses within the Sphagnum subgenus Acutifolia and contains several circumboreal species whose ranges encompass both glaciated and unglaciated regions across the northern hemisphere. In this paper, we (1) inferred the phylogeny of subg. Acutifolia and (2) investigated patterns of population structure and genetic diversity among five circumboreal species within the S. capillifolium complex. METHODS: We generated RAD sequencing data from most species of the subg. Acutifolia and samples from across the distribution ranges of circumboreal species within the S. capillifolium complex. RESULTS: We resolved at least 14 phylogenetic clusters within the S. capillifolium complex. Five circumboreal species show some common patterns: One population system comprises plants in eastern North America and Europe, and another comprises plants in the Pacific Northwest or around the Beringian and Arctic regions. Alaska appears to be a hotspot for genetic admixture, genetic diversity, and sometimes endemic subclades. CONCLUSIONS: Our results support the hypothesis that populations of five circumboreal species within the S. capillifolium complex survived in multiple refugia during the last glacial maximum. Long-distance dispersal out of refugia, population bottlenecks, and possible adaptations to conditions unique to each refugium could have contributed to current geographic patterns. These results indicate the important role of historical events in shaping the complex population structure of plants with broad distribution ranges.


Assuntos
Variação Genética , Filogenia , Sphagnopsida , Sphagnopsida/genética
8.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511685

RESUMO

Termites are major decomposers in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae form the second-largest termite family and are distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes of ∼120 species, about 27% of kalotermitid diversity, including representatives of 21 of the 23 kalotermitid genera. Our mitochondrial genome phylogenetic trees were corroborated by phylogenies inferred from nuclear ultraconserved elements derived from a subset of 28 species. We found that extant kalotermitids shared a common ancestor 84 Ma (75-93 Ma 95% highest posterior density), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the ∼40 disjunctions among biogeographic realms were dated at <50 Ma, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for critical taxonomic revision and future comparative analyses of Kalotermitidae.


Assuntos
Genoma Mitocondrial , Isópteros , Animais , Núcleo Celular , Ecossistema , Humanos , Isópteros/genética , Filogenia
9.
Proc Biol Sci ; 290(2008): 20231708, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817589

RESUMO

Exploring how organisms overcome geographical barriers to dispersal is a fundamental question in biology. Passive long-distance dispersal events, although infrequent and unpredictable, have a considerable impact on species range expansions. Despite limited active dispersal capabilities, many stick insect species have vast geographical ranges, indicating that passive long-distance dispersal is vital for their distribution. A potential mode of passive dispersal in stick insects is via the egg stage within avian digestive tracts, as suggested by experimental evidence. However, detecting such events under natural conditions is challenging due to their rarity. Therefore, to indirectly assess the potential of historical avian-mediated dispersal, we examined the population genetic structure of the flightless stick insect Ramulus mikado across Japan, based on a multifaceted molecular approach [cytochrome oxidase subunit I (COI) haplotypes, nuclear simple sequence repeat markers and genome-wide single nucleotide polymorphisms]. Subsequently, we identified unique phylogeographic patterns, including the discovery of identical COI genotypes spanning considerable distances, which substantiates the notion of passive long-distance genotypic dispersal. Overall, all the molecular data revealed the low and mostly non-significant genetic differentiation among populations, with identical or very similar genotypes across distant populations. We propose that long-distance dispersal facilitated by birds is the plausible explanation for the unique phylogeographic pattern observed in this flightless stick insect.


Assuntos
Besouros , Insetos , Animais , Filogeografia , Insetos/genética , Deriva Genética , Aves , Variação Genética , Genética Populacional , Haplótipos , Filogenia
10.
Mol Phylogenet Evol ; 186: 107825, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244505

RESUMO

Studying the historical biogeography and life history transitions from eusocial colony life to social parasitism contributes to our understanding of the evolutionary mechanisms generating biodiversity in eusocial insects. The ants in the genus Myrmecia are a well-suited system for testing evolutionary hypotheses about how their species diversity was assembled through time because the genus is endemic to Australia with the single exception of the species M. apicalis inhabiting the Pacific Island of New Caledonia, and because at least one social parasite species exists in the genus. However, the evolutionary mechanisms underlying the disjunct biogeographic distribution of M. apicalis and the life history transition(s) to social parasitism remain unexplored. To study the biogeographic origin of the isolated, oceanic species M. apicalis and to reveal the origin and evolution of social parasitism in the genus, we reconstructed a comprehensive phylogeny of the ant subfamily Myrmeciinae. We utilized Ultra Conserved Elements (UCEs) as molecular markers to generate a molecular genetic dataset consisting of 2,287 loci per taxon on average for 66 out of the 93 known Myrmecia species as well as for the sister lineage Nothomyrmecia macrops and selected outgroups. Our time-calibrated phylogeny inferred that: (i) stem Myrmeciinae originated during the Paleocene âˆ¼ 58 Ma ago; (ii) the current disjunct biogeographic distribution of M. apicalis was driven by long-distance dispersal from Australia to New Caledonia during the Miocene âˆ¼ 14 Ma ago; (iii) the single social parasite species, M. inquilina, evolved directly from one of the two known host species, M. nigriceps, in sympatry via the intraspecific route of social parasite evolution; and (iv) 5 of the 9 previously established taxonomic species groups are non-monophyletic. We suggest minor changes to reconcile the molecular phylogenetic results with the taxonomic classification. Our study enhances our understanding of the evolution and biogeography of Australian bulldog ants, contributes to our knowledge about the evolution of social parasitism in ants, and provides a solid phylogenetic foundation for future inquiries into the biology, taxonomy, and classification of Myrmeciinae.


Assuntos
Formigas , Animais , Filogenia , Formigas/genética , Austrália , Simbiose , Nova Caledônia , Evolução Biológica , Teorema de Bayes
11.
Mol Phylogenet Evol ; 189: 107929, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37726037

RESUMO

Ameroglossum is a rare plant genus endemic to northeastern of Brazil, initially monospecific (A. pernambucense) and recently expanded by the description of eight new species and two related genera. The genus was initially placed in the family Scrophulariaceae, but this has never been phylogenetically tested. This group is ecologically restricted to rocky inselberg habitats that function as island-like systems (ILS) with spatial fragmentation, limited area, environmental heterogeneity, temporal isolation and low connectivity. Here we use a phylogenetic perspective to test the hypothesis that Ameroglossum diversification was related to island-like radiation in inselbergs. Our results support that Ameroglossum is monophyletic only with the inclusion of Catimbaua and Isabelcristinia (named here as Ameroglossum sensu lato) and this group was well-supported in the family Linderniaceae. Biogeographic analyses suggest that the ancestral of Ameroglossum and related genus arrived in South America c.a. 15 million years ago by long-distance dispersal, given the ancestral distribution of Linderniaceae in Africa. In rocky outcrop habitats, Ameroglossum s.l. developed floral morphological specialization associated with pollinating hummingbirds, compatible with an island-like model. However, no increase in speciation rate was detected, which may be related to high extinction rates and/or slow diversification rate in this ecologically restrictive environment. Altogether, in Ameroglossum key innovations involving flowers seem to have offered opportunities for evolution of greater phenotypic diversity and occupation of new niches in rocky outcrop environments.


Assuntos
Ecossistema , Lamiales , Filogenia , Flores/genética , Brasil
12.
Mol Phylogenet Evol ; 184: 107788, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127113

RESUMO

To better understand the origin of the high diversity and endemism in the Southern Alps of Europe, we investigated the phylogeny and population structure of the rock-dwelling snail group Chilostoma (Cingulifera) in the Southern Alps. We generated genomic ddRAD data and mitochondrial sequences of 104 Cingulifera specimens from 28 populations and 14 other Ariantinae. Until recently, about 30 Cingulifera taxa were classified as subspecies of a single polytypic species. The phylogenetic and population genetic analyses of the ddRAD data and mitochondrial sequences revealed that Cingulifera in the Southern Alps is differentiated into three species. Each of the three Chilostoma (Cingulifera) species occupies disjunct sub-areas, which are separated by areas occupied by other Chilostoma taxa. Neighbouring populations of different species show little or no admixture. Tests indicating that the genetic differentiation of the three Cingulifera taxa cannot be explained by isolation by distance confirmed their species status. The disjunct range patterns demonstrate the importance of stochastic events such as passive long-distance dispersal for the evolution of population structure and speciation in these snails, and of priority effects and ecological competition as important factors influencing species distributions.


Assuntos
Mitocôndrias , Caramujos , Animais , Filogenia , Caramujos/genética , Europa (Continente) , Variação Genética
13.
Mol Phylogenet Evol ; 186: 107832, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263456

RESUMO

We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.


Assuntos
Peixes , Água Doce , Animais , Filogenia , Oceano Índico , Austrália , Peixes/genética
14.
Glob Ecol Biogeogr ; 32(7): 1046-1058, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38504871

RESUMO

Aim: Our knowledge of Pleistocene refugia and post-glacial recolonization routes of forest understorey plants is still very limited. The geographical ranges of these species are often rather narrow and show highly idiosyncratic, often fragmented patterns indicating either narrow and species-specific ecological tolerances or strong dispersal limitations. However, the relative roles of these factors are inherently difficult to disentangle. Location: Central and south-eastern Europe. Time period: 17,100 BP - present. Major taxa studied: Five understorey herbs of European beech forests: Aposeris foetida, Cardamine trifolia, Euphorbia carniolica, Hacquetia epipactis and Helleborus niger. Methods: We used spatio-temporally explicit modelling to reconstruct the post-glacial range dynamics of the five forest understorey herbs. We varied niche requirements, demographic rates and dispersal abilities across plausible ranges and simulated the spread of species from potential Pleistocene refugia identified by phylogeographical analyses. Then we identified the parameter settings allowing for the most accurate reconstruction of their current geographical ranges. Results: We found a largely homogenous pattern of optimal parameter settings among species. Broad ecological niches had to be combined with very low but non-zero rates of long-distance dispersal via chance events and low rates of seed dispersal over moderate distances by standard dispersal vectors. However, long-distance dispersal events, although rare, led to high variation among replicated simulation runs. Main conclusions: Small and fragmented ranges of many forest understorey species are best explained by a combination of broad ecological niches and rare medium- and long-distance dispersal events. Stochasticity is thus an important determinant of current species ranges, explaining the idiosyncratic distribution patterns of the study species despite strong similarities in refugia, ecological tolerances and dispersal abilities.

15.
Ecol Appl ; 33(3): e2806, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36660794

RESUMO

Invasive species such as insects, pathogens, and weeds reaching new environments by traveling with the wind, represent unquantified and difficult-to-manage biosecurity threats to human, animal, and plant health in managed and natural ecosystems. Despite the importance of these invasion events, their complexity is reflected by the lack of tools to predict them. Here, we provide the first known evidence showing that the long-distance aerial dispersal of invasive insects and wildfire smoke, a potential carrier of invasive species, is driven by atmospheric pathways known as Lagrangian coherent structures (LCS). An aerobiological modeling system combining LCS modeling with species biology and atmospheric survival has the potential to transform the understanding and prediction of atmospheric invasions. The proposed modeling system run in forecast or hindcast modes can inform high-risk invasion events and invasion source locations, making it possible to locate them early, improving the chances of eradication success.


Assuntos
Espécies Introduzidas , Vento , Animais , Humanos , Ecossistema , Plantas Daninhas , Insetos
16.
Am J Bot ; 110(1): e16103, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576338

RESUMO

PREMISE: To address the biodiversity crisis, we need to understand the evolution of all organisms and how they fill geographic and ecological space. Syntrichia is one of the most diverse and dominant genera of mosses, ranging from alpine habitats to desert biocrusts, yet its evolutionary history remains unclear. METHODS: We present a comprehensive phylogenetic analysis of Syntrichia, based on both molecular and morphological data, with most of the named species and closest outgroups represented. In addition, we provide ancestral-state reconstructions of water-related traits and a global biogeographic analysis. RESULTS: We found 10 major well-resolved subclades of Syntrichia that possess geographical or morphological coherence, in some cases representing previously accepted genera. We infer that the extant species diversity of Syntrichia likely originated in South America in the early Eocene (56.5-43.8 million years ago [Mya]), subsequently expanded its distribution to the neotropics, and finally dispersed to the northern hemisphere. There, the clade experienced a recent diversification (15-12 Mya) into a broad set of ecological niches (e.g., the S. caninervis and S. ruralis complexes). The transition from terricolous to either saxicolous or epiphytic habitats occurred more than once and was associated with changes in water-related traits. CONCLUSIONS: Our study provides a framework for understanding the evolutionary history of Syntrichia through the combination of morphological and molecular characters, revealing that migration events that shaped the current distribution of the clade have implications for morphological character evolution in relation to niche diversity.


Assuntos
Briófitas , Filogenia , Teorema de Bayes , Briófitas/anatomia & histologia , Briófitas/classificação , Briófitas/genética , Ecossistema , Geografia , América do Sul
17.
Am J Bot ; 110(3): 1-11, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758170

RESUMO

PREMISE: Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models. METHODS: In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. RESULTS: We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well. CONCLUSIONS: The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.


Assuntos
Capsella , Capsella/genética , Estações do Ano , América do Norte , Europa (Continente) , Ecossistema
18.
Proc Natl Acad Sci U S A ; 117(27): 15397-15399, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571940

RESUMO

Fish have somehow colonized isolated water bodies all over the world without human assistance. It has long been speculated that these colonization events are assisted by waterbirds, transporting fish eggs attached to their feet and feathers, yet empirical support for this is lacking. Recently, it was suggested that endozoochory (i.e., internal transport within the gut) might play a more important role, but only highly resistant diapause eggs of killifish have been found to survive passage through waterbird guts. Here, we performed a controlled feeding experiment, where developing eggs of two cosmopolitan, invasive cyprinids (common carp, Prussian carp) were fed to captive mallards. Live embryos of both species were retrieved from fresh feces and survived beyond hatching. Our study identifies an overlooked dispersal mechanism in fish, providing evidence for bird-mediated dispersal ability of soft-membraned eggs undergoing active development. Only 0.2% of ingested eggs survived gut passage, yet, given the abundance, diet, and movements of ducks in nature, our results have major implications for biodiversity conservation and invasion dynamics in freshwater ecosystems.


Assuntos
Distribuição Animal , Carpas/embriologia , Patos/fisiologia , Água Doce , Espécies Introduzidas , Óvulo , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Fezes , Comportamento Alimentar , Feminino , Masculino
19.
Mol Phylogenet Evol ; 166: 107335, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757167

RESUMO

Intercontinental disjunct distributions can arise from vicariance, long distance dispersal, or both. Tecomeae (Bignoniaceae) are a nearly cosmopolitan clade of flowering plants providing us with an excellent opportunity to investigate global distribution patterns. While the tribe contains only about 57 species, it has achieved a distribution that is not only pantropical, but also extends into the temperate zones in both the Northern and Southern hemispheres. This distribution is similar to the distribution of its sister group, a clade of about 750 spp. that includes most remaining taxa in Bignoniaceae. To infer temporal and spatial patterns of dispersal, we generated a phylogeny of Tecomeae by gathering sequence data from chloroplast and nuclear markers for 41 taxa. Fossil calibrations were used to determine divergence times, and ancestral states were reconstructed to infer its biogeographic history. We found support for a South American origin and a crown age of the tribe estimated at ca. 40 Ma. Two dispersal events seem to have happened during the Eocene-Oligocene, one from South America to the Old World, and another from South America to North America. Furthermore, two other dispersal events seem to have taken place during the Miocene, one from North America to Asia, and another from Australia to South America. We suggest that intercontinental dispersal via land bridges and island hopping, as well as sweepstakes of long distance dispersal from the Eocene to the present explain the global distribution of Tecomeae.


Assuntos
Bignoniaceae , Teorema de Bayes , Cloroplastos , Fósseis , Filogenia , Filogeografia
20.
Mol Phylogenet Evol ; 166: 107329, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678410

RESUMO

The papilionoid legume genus Ormosia (Fabaceae) comprises about 150 species of trees and exhibits a striking disjunct geographical distribution between the New World- and Asian and Australasian wet tropics and subtropics. Modern classifications of Ormosia are not grounded on a well-substantiated phylogenetic hypothesis and have been limited to just portions of the geographical range of the genus. The lack of an evolutionarily-based foundation for systematic studies has hindered taxonomic work on the genus and prevented the testing of biogeographical hypotheses related to the origin of the Old World/New World disjunction and the individual dispersal histories within both areas. Here, we present the most comprehensively sampled molecular phylogeny of Ormosia to date, based on analysis of both nuclear (ITS) and plastid (matK and trnL-F) DNA sequences from 82 species of the genus. Phylogenetically-based divergence times and ancestral range estimations are employed to test hypotheses related to the biogeographical history of the genus. We find strong support for the monophyly of Ormosia and the grouping of all sampled Asian species of the genus into two comparably sized clades, one of which is sister to another large clade containing all sampled New World species. Within the New World clade, additional resolution supports the grouping of most species into three mutually exclusive subordinate clades. The remaining New World species form a fourth well-supported clade in the analyses of plastid sequences, but that result is contradicted by the analysis of ITS. With few exceptions the supported clades have not been previously recognized as taxonomic groups. The biogeographical analysis suggests that Ormosia originated in continental Asia and dispersed to the New World in the Oligocene or early Miocene via long-distance trans-oceanic dispersal. We reject the hypothesis that the inter-hemispheric disjunction in Ormosia resulted from fragmentation of a more continuous "Boreotropical" distribution since the dispersal post-dates Eocene climatic maxima. Both of the Old World clades appear to have originated in mainland Asia and subsequently dispersed into the Malay Archipelago and beyond, at least two lineages dispersing across Wallace's Line as far as the Solomon Islands and northeastern Australia. In the New World, the major clades all originated in Amazonia. Dispersal from Amazonia into peripheral areas in Central America, the Caribbean, and Extra-Amazonian Brazil occurred multiple times over varying time scales, the earliest beginning in the late Miocene. In a few cases, these dispersals were followed by local diversification, but not by reverse migration back to Amazonia. Within each of the two main areas of distribution, multiple modest bouts of oceanic dispersal were required to achieve the modern distributions.


Assuntos
Fabaceae , Teorema de Bayes , Evolução Biológica , Fabaceae/genética , Filogenia , Filogeografia , Plastídeos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa