RESUMO
Prefrontal cortex (PFC) is postulated to exert "top-down control" on information processing throughout the brain to promote specific behaviors. However, pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down control of hippocampal information processing remains sparse. Here we describe monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide-expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal-hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal encoding of object locations and augment object-induced increases in spatial information. Correspondingly, activating or inhibiting these projections promotes or suppresses object exploration, respectively. Together, these results elucidate a top-down prefrontal pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.
Assuntos
Hipocampo , Córtex Pré-Frontal , Comportamento Exploratório , Hipocampo/fisiologia , Interneurônios/metabolismo , Córtex Pré-Frontal/fisiologia , Peptídeo Intestinal VasoativoRESUMO
Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.
Assuntos
Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Neuritos/fisiologia , Tratos Piramidais/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Software , TransfecçãoRESUMO
Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PAPERCLIP.
Assuntos
Bacillus subtilis/fisiologia , Biofilmes , Fenômenos Eletrofisiológicos , Pseudomonas aeruginosa/fisiologia , Biofilmes/classificação , Potenciais da Membrana , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Potássio/metabolismoRESUMO
The impact of genome organization on the control of gene expression persists as a major challenge in regulatory biology. Most efforts have focused on the role of CTCF-enriched boundary elements and TADs, which enable long-range DNA-DNA associations via loop extrusion processes. However, there is increasing evidence for long-range chromatin loops between promoters and distal enhancers formed through specific DNA sequences, including tethering elements, which bind the GAGA-associated factor (GAF). Previous studies showed that GAF possesses amyloid properties in vitro, bridging separate DNA molecules. In this study, we investigated whether GAF functions as a looping factor in Drosophila development. We employed Micro-C assays to examine the impact of defined GAF mutants on genome topology. These studies suggest that the N-terminal POZ/BTB oligomerization domain is important for long-range associations of distant GAGA-rich tethering elements, particularly those responsible for promoter-promoter interactions that coordinate the activities of distant paralogous genes.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.
Assuntos
DNA Ligase Dependente de ATP/ultraestrutura , Enzimas Reparadoras do DNA/ultraestrutura , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Apoptose/genética , Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestrutura , Complexos Multiproteicos/genética , Fosforilação/genéticaRESUMO
EphB1 is required for proper guidance of cortical axon projections during brain development, but how EphB1 regulates this process remains unclear. We show here that EphB1 conditional knockout (cKO) in GABAergic cells (Vgat-Cre), but not in cortical excitatory neurons (Emx1-Cre), reproduced the cortical axon guidance defects observed in global EphB1 KO mice. Interestingly, in EphB1 cKOVgat mice, the misguided axon bundles contained co-mingled striatal GABAergic and somatosensory cortical glutamatergic axons. In wild-type mice, somatosensory axons also co-fasciculated with striatal axons, notably in the globus pallidus, suggesting that a subset of glutamatergic cortical axons normally follows long-range GABAergic axons to reach their targets. Surprisingly, the ectopic axons in EphB1 KO mice were juxtaposed to major blood vessels. However, conditional loss of EphB1 in endothelial cells (Tie2-Cre) did not produce the axon guidance defects, suggesting that EphB1 in GABAergic neurons normally promotes avoidance of these ectopic axons from the developing brain vasculature. Together, our data reveal a new role for EphB1 in GABAergic neurons to influence proper cortical glutamatergic axon guidance during brain development.
Assuntos
Orientação de Axônios , Células Endoteliais , Animais , Camundongos , Axônios/fisiologia , Neurônios GABAérgicos , Camundongos Knockout , Receptores Proteína Tirosina Quinases , Receptor EphB1/metabolismoRESUMO
The genome is organized into topologically associated domains (TADs) that enclose smaller subTADs. Here, we identify and characterize an enhancer that is located in the middle of the V gene region of the immunoglobulin kappa light chain (Igκ) locus that becomes active preceding the stage at which this locus undergoes V(D)J recombination. This enhancer is a hub of long-range chromatin interactions connecting subTADs in the V gene region with the recombination center at the J genes. Deletion of this element results in a highly altered long-range chromatin interaction pattern across the locus and, importantly, affects individual V gene utilization locus-wide. These results indicate the existence of an enhancer-dependent framework in the Igκ locus and further suggest that the composition of the diverse antibody repertoire is regulated in a subTAD-specific manner. This enhancer thus plays a structural role in orchestrating the proper folding of the Igκ locus in preparation for V(D)J recombination.
Assuntos
Diversidade de Anticorpos , Núcleo Celular/imunologia , Elementos Facilitadores Genéticos , Rearranjo Gênico do Linfócito B , Cadeias kappa de Imunoglobulina/imunologia , Células Precursoras de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Forma do Núcleo Celular , Montagem e Desmontagem da Cromatina , Genótipo , Células HEK293 , Humanos , Cadeias kappa de Imunoglobulina/química , Cadeias kappa de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Células Precursoras de Linfócitos B/metabolismo , Conformação Proteica , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Relação Estrutura-AtividadeRESUMO
CRISPR-Cas systems enable microbial adaptive immunity and provide eukaryotic genome editing tools. These tools employ a single effector enzyme of type II or V CRISPR to generate RNA-guided, precise genome breaks. Here we demonstrate the feasibility of using type I CRISPR-Cas to effectively introduce a spectrum of long-range chromosomal deletions with a single RNA guide in human embryonic stem cells and HAP1 cells. Type I CRISPR systems rely on the multi-subunit ribonucleoprotein (RNP) complex Cascade to identify DNA targets and on the helicase-nuclease enzyme Cas3 to degrade DNA processively. With RNP delivery of T. fusca Cascade and Cas3, we obtained 13%-60% editing efficiency. Long-range PCR-based and high-throughput-sequencing-based lesion analyses reveal that a variety of deletions, ranging from a few hundred base pairs to 100 kilobases, are created upstream of the target site. These results highlight the potential utility of type I CRISPR-Cas for long-range genome manipulations and deletion screens in eukaryotes.
Assuntos
Sistemas CRISPR-Cas/genética , Células-Tronco Embrionárias Humanas , RNA Guia de Cinetoplastídeos/genética , Deleção de Sequência/genética , Endonucleases/química , Endonucleases/genética , Escherichia coli/genética , Edição de Genes/métodos , Genoma Humano/genética , Genômica , Humanos , Ribonucleoproteínas/genéticaRESUMO
Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.
Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Genótipo , Bancos de Espécimes Biológicos , Reino Unido , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
MOTIVATION: Coding and noncoding RNA molecules participate in many important biological processes. Noncoding RNAs fold into well-defined secondary structures to exert their functions. However, the computational prediction of the secondary structure from a raw RNA sequence is a long-standing unsolved problem, which after decades of almost unchanged performance has now re-emerged due to deep learning. Traditional RNA secondary structure prediction algorithms have been mostly based on thermodynamic models and dynamic programming for free energy minimization. More recently deep learning methods have shown competitive performance compared with the classical ones, but there is still a wide margin for improvement. RESULTS: In this work we present sincFold, an end-to-end deep learning approach, that predicts the nucleotides contact matrix using only the RNA sequence as input. The model is based on 1D and 2D residual neural networks that can learn short- and long-range interaction patterns. We show that structures can be accurately predicted with minimal physical assumptions. Extensive experiments were conducted on several benchmark datasets, considering sequence homology and cross-family validation. sincFold was compared with classical methods and recent deep learning models, showing that it can outperform the state-of-the-art methods.
Assuntos
Biologia Computacional , Aprendizado Profundo , Conformação de Ácido Nucleico , RNA , RNA/química , RNA/genética , Biologia Computacional/métodos , Algoritmos , Redes Neurais de Computação , TermodinâmicaRESUMO
Remote patient monitoring is a critical component of digital medicine, and the COVID-19 pandemic has further highlighted its importance. Wearable sensors aimed at noninvasive extraction and transmission of high-fidelity physiological data provide an avenue toward at-home diagnostics and therapeutics; however, the infrastructure requirements for such devices limit their use to areas with well-established connectivity. This accentuates the socioeconomic and geopolitical gap in digital health technology and points toward a need to provide access in areas that have limited resources. Low-power wide area network (LPWAN) protocols, such as LoRa, may provide an avenue toward connectivity in these settings; however, there has been limited work on realizing wearable devices with this functionality because of power and electromagnetic constraints. In this work, we introduce wearables with electromagnetic, electronic, and mechanical features provided by a biosymbiotic platform to realize high-fidelity biosignals transmission of 15 miles without the need for satellite infrastructure. The platform implements wireless power transfer for interaction-free recharging, enabling long-term and uninterrupted use over weeks without the need for the user to interact with the devices. This work presents demonstration of a continuously wearable device with this long-range capability that has the potential to serve resource-constrained and remote areas, providing equitable access to digital health.
Assuntos
Pandemias , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , EletrônicaRESUMO
Effects of aerosols such as black carbon (BC) on climate and buildup of the monsoon over the Indian Ocean are insufficiently quantified. Uncertain contributions from various natural and anthropogenic sources impede our understanding. Here, we use observations over 5 y of BC and its isotopes at a remote island observatory in northern Indian Ocean to constrain loadings and sources during little-studied monsoon season. Carbon-14 data show a highly variable yet largely fossil (65 ± 15%) source mixture. Combining carbon-14 with carbon-13 reveals the impact of African savanna burning, which occasionally approach 50% (48 ± 9%) of the total BC loadings. The BC mass-absorption cross-section for this regime is 7.6 ± 2.6 m2/g, with higher values during savanna fire input. Taken together, the combustion sources, longevity, and optical properties of BC aerosols over summertime Indian Ocean are different than the more-studied winter aerosol, with implications for chemical transport and climate model simulations of the Indian monsoon.
RESUMO
Over recent years, long-range RNA structure has emerged as a factor that is fundamental to alternative splicing regulation. An increasing number of human disorders are now being associated with splicing defects; hence it is essential to develop methods that assess long-range RNA structure experimentally. RNA in situ conformation sequencing (RIC-seq) is a method that recapitulates RNA structure within physiological RNA-protein complexes. In this work, we juxtapose pairs of conserved complementary regions (PCCRs) that were predicted in silico with the results of RIC-seq experiments conducted in seven human cell lines. We show statistically that RIC-seq support of PCCRs correlates with their properties, such as equilibrium free energy, presence of compensatory substitutions, and occurrence of A-to-I RNA editing sites and forked eCLIP peaks. Exons enclosed in PCCRs that are supported by RIC-seq tend to have weaker splice sites and lower inclusion rates, which is indicative of post-transcriptional splicing regulation mediated by RNA structure. Based on these findings, we prioritize PCCRs according to their RIC-seq support and show, using antisense nucleotides and minigene mutagenesis, that PCCRs in two disease-associated human genes, PHF20L1 and CASK, and also PCCRs in their murine orthologs, impact alternative splicing. In sum, we demonstrate how RIC-seq experiments can be used to discover functional long-range RNA structures, and particularly those that regulate alternative splicing.
Assuntos
Processamento Alternativo , Splicing de RNA , Humanos , Animais , Camundongos , Sequência de Bases , Análise de Sequência de RNA , RNA/genética , Sítios de Splice de RNA , Proteínas Cromossômicas não Histona/genéticaRESUMO
Sustained attention, as the basis of general cognitive ability, naturally varies across different time scales, spanning from hours, e.g. from wakefulness to drowsiness state, to seconds, e.g. trial-by-trail fluctuation in a task session. Whether there is a unified mechanism underneath such trans-scale variability remains unclear. Here we show that fluctuation of cortical excitation/inhibition (E/I) is a strong modulator to sustained attention in humans across time scales. First, we observed the ability to attend varied across different brain states (wakefulness, postprandial somnolence, sleep deprived), as well as within any single state with larger swings. Second, regardless of the time scale involved, we found highly attentive state was always linked to more balanced cortical E/I characterized by electroencephalography (EEG) features, while deviations from the balanced state led to temporal decline in attention, suggesting the fluctuation of cortical E/I as a common mechanism underneath trans-scale attentional variability. Furthermore, we found the variations of both sustained attention and cortical E/I indices exhibited fractal structure in the temporal domain, exhibiting features of self-similarity. Taken together, these results demonstrate that sustained attention naturally varies across different time scales in a more complex way than previously appreciated, with the cortical E/I as a shared neurophysiological modulator.
Assuntos
Atenção , Córtex Cerebral , Eletroencefalografia , Vigília , Humanos , Atenção/fisiologia , Masculino , Feminino , Adulto Jovem , Adulto , Vigília/fisiologia , Córtex Cerebral/fisiologia , Inibição Neural/fisiologia , Fatores de Tempo , Excitabilidade Cortical/fisiologia , Privação do Sono/fisiopatologiaRESUMO
Extreme daily values of precipitation (1939-2021), discharge (1991-2021), phosphorus (P) load (1994-2021), and phycocyanin, a pigment of Cyanobacteria (June 1-September 15 of 2008-2021) are clustered as multi-day events for Lake Mendota, Wisconsin. Long-range dependence, or memory, is the shortest for precipitation and the longest for phycocyanin. Extremes are clustered for all variates and those of P load and phycocyanin are most strongly clustered. Extremes of P load are predictable from extremes of precipitation, and precipitation and P load are correlated with later concentrations of phycocyanin. However, time delays from 1 to 60 d were found between P load extremes and the next extreme phycocyanin event within the same year of observation. Although most of the lake's P enters in extreme events, blooms of Cyanobacteria may be sustained by recycling and food web processes.
Assuntos
Cianobactérias , Fósforo , Fósforo/análise , Ficocianina , Lagos/microbiologia , WisconsinRESUMO
A cardinal feature of the neocortex is the progressive increase of the spatial receptive fields along the cortical hierarchy. Recently, theoretical and experimental findings have shown that the temporal response windows also gradually enlarge, so that early sensory neural circuits operate on short timescales whereas higher-association areas are capable of integrating information over a long period of time. While an increased receptive field is accounted for by spatial summation of inputs from neurons in an upstream area, the emergence of timescale hierarchy cannot be readily explained, especially given the dense interareal cortical connectivity known in the modern connectome. To uncover the required neurobiological properties, we carried out a rigorous analysis of an anatomically based large-scale cortex model of macaque monkeys. Using a perturbation method, we show that the segregation of disparate timescales is defined in terms of the localization of eigenvectors of the connectivity matrix, which depends on three circuit properties: 1) a macroscopic gradient of synaptic excitation, 2) distinct electrophysiological properties between excitatory and inhibitory neuronal populations, and 3) a detailed balance between long-range excitatory inputs and local inhibitory inputs for each area-to-area pathway. Our work thus provides a quantitative understanding of the mechanism underlying the emergence of timescale hierarchy in large-scale primate cortical networks.
Assuntos
Conectoma , Modelos Neurológicos , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Animais , MacacaRESUMO
Carrier transport capacity with high mobility and long-range diffusion length holds particular significance for the advancement of modern optoelectronic devices. Herein, we have unveiled the carrier dynamics and transport properties of a pristine violet phosphorus (VP) nanosheet by a transient absorption microscopy. Under the excitation (2.41 eV) above the exciton band, two photoinduced absorption peaks with the energy difference of approximately 520 meV emerge within a broadband transient absorption background which originates from the prompt generation of free carriers and the concomitant formation of excitons (lifetime of 467.21 ps). This observation is consistent with the established band-edge model of VP. Intriguingly, we have determined the ambipolar diffusion coefficient and mobility of VP to be approximately 47.32 cm2·s-1 and 1798 cm2·V-1·s-1, respectively, which further indicate a long-range carrier transport of approximately 2.10 µm. This work unveils the significant carrier transport capacity of VP, highlighting its potential for future optoelectronic and excitonic applications.
RESUMO
Xenopus young tadpoles regenerate a limb with the anteroposterior (AP) pattern, but metamorphosed froglets regenerate a hypomorphic limb after amputation. The key gene for AP patterning, shh, is expressed in a regenerating limb of the tadpole but not in that of the froglet. Genomic DNA in the shh limb-specific enhancer, MFCS1 (ZRS), is hypermethylated in froglets but hypomethylated in tadpoles: shh expression may be controlled by epigenetic regulation of MFCS1. Is MFCS1 specifically activated for regenerating the AP-patterned limb? We generated transgenic Xenopus laevis lines that visualize the MFCS1 enhancer activity with a GFP reporter. The transgenic tadpoles showed GFP expression in hoxd13-and shh-expressing domains of developing and regenerating limbs, whereas the froglets showed no GFP expression in the regenerating limbs despite having hoxd13 expression. Genome sequence analysis and co-transfection assays using cultured cells revealed that Hoxd13 can activate Xenopus MFCS1. These results suggest that MFCS1 activation correlates with regeneration of AP-patterned limbs and that re-activation of epigenetically inactivated MFCS1 would be crucial to confer the ability to non-regenerative animals for regenerating a properly patterned limb.
Assuntos
Epigênese Genética , Extremidades , Animais , Xenopus laevis/genética , Animais Geneticamente Modificados , Extremidades/fisiologia , Fatores de Transcrição/genéticaRESUMO
Differentiating between auditory signals of various emotional significance plays a crucial role in an individual's ability to thrive and excel in social interactions and in survival. Multiple approaches, including anatomical studies, electrophysiological investigations, imaging techniques, optogenetics and chemogenetics, have confirmed that the auditory cortex (AC) impacts fear-related behaviours driven by auditory stimuli by conveying auditory information to the lateral amygdala (LA) through long-range excitatory glutamatergic and GABAergic connections. In addition, the LA provides glutamatergic projections to the AC which are important to fear memory expression and are modified by associative fear learning. Here we test the hypothesis that the LA also sends long-range direct inhibitory inputs to the cortex. To address this fundamental question, we used anatomical and electrophysiological approaches, allowing us to directly assess the nature of GABAergic inputs from the LA to the AC in the mouse. Our findings elucidate the existence of a long-range inhibitory pathway from the LA to the AC (LAC) via parvalbumin-expressing (LAC-Parv) and somatostatin-expressing (LAC-SOM) neurons. This research identifies distinct electrophysiological properties for genetically defined long-range GABAergic neurons involved in the communication between the LA and the cortex (LAC-Parv inhibitory projections â AC neurons; LAC-Som inhibitory projections â AC neurons) within the lateral amygdala cortical network. KEY POINTS: The mouse auditory cortex receives inputs from the lateral amygdala. Retrograde viral tracing techniques allowed us to identify two previously undescribed lateral amygdala to auditory cortex (LAC) GABAergic projecting neurons. Extensive electrophysiological, morphological and anatomical characterization of LAC neurons is provided here, demonstrating key differences in the three populations. This study paves the way for a better understanding of the growing complexity of the cortico-amygdala-cortico circuit.
Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/fisiologia , Tonsila do Cerebelo/fisiologia , Neurônios GABAérgicos/fisiologia , Parvalbuminas/metabolismoRESUMO
BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.