Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 141(2): 505-520, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29281030

RESUMO

Nigro-striatal dopamine transmission is central to a wide range of neuronal functions, including skill learning, which is disrupted in several pathologies such as Parkinson's disease. The synaptic plasticity mechanisms, by which initial motor learning is stored for long time periods in striatal neurons, to then be gradually optimized upon subsequent training, remain unexplored. Addressing this issue is crucial to identify the synaptic and molecular mechanisms involved in striatal-dependent learning impairment in Parkinson's disease. In this study, we took advantage of interindividual differences between outbred rodents in reaching plateau performance in the rotarod incremental motor learning protocol, to study striatal synaptic plasticity ex vivo. We then assessed how this process is modulated by dopamine receptors and the dopamine active transporter, and whether it is impaired by overexpression of human α-synuclein in the mesencephalon; the latter is a progressive animal model of Parkinson's disease. We found that the initial acquisition of motor learning induced a dopamine active transporter and D1 receptors mediated long-term potentiation, under a protocol of long-term depression in striatal medium spiny neurons. This effect disappeared in animals reaching performance plateau. Overexpression of human α-synuclein reduced striatal dopamine active transporter levels, impaired motor learning, and prevented the learning-induced long-term potentiation, before the appearance of dopamine neuronal loss. Our findings provide evidence of a reorganization of cellular plasticity within the dorsolateral striatum that is mediated by dopamine receptors and dopamine active transporter during the acquisition of a skill. This newly identified mechanism of cellular memory is a form of metaplasticity that is disrupted in the early stage of synucleinopathies, such as Parkinson's disease, and that might be relevant for other striatal pathologies, such as drug abuse.


Assuntos
Corpo Estriado/citologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Piperazinas/farmacologia , Tempo de Reação/fisiologia , Sinapsinas/genética , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia
2.
Neuroscience ; 462: 191-204, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710914

RESUMO

Masao Ito proposed a cerebellar learning hypothesis with Marr and Albus in the early 1970s. He suggested that cerebellar flocculus (FL) Purkinje cells (PCs), which directly inhibit the vestibular nuclear neurons driving extraocular muscle motor neurons, adaptively control the horizontal vestibulo-ocular reflex (HVOR) through the modification of mossy and parallel fiber-mediated vestibular responsiveness by visual climbing fiber (CF) inputs. Later, it was suggested that the same FL PCs adaptively control the horizontal optokinetic response (HOKR) in the same manner through the modification of optokinetic responsiveness in rodents and rabbits. In 1982, Ito and his colleagues discovered the plasticity of long-term depression (LTD) at parallel fiber (PF)-PC synapses after conjunctive stimulation of mossy or parallel fibers with CFs. Long-term potentiation (LTP) at PF-PC synapses by weak PF stimulation alone was found later. Many lines of experimental evidence have supported their hypothesis using various experimental methods and materials for the past 50 years by many research groups. Although several controversial findings were presented regarding their hypothesis, the reasons underlying many of them were clarified. Today, their hypothesis is considered as a fundamental mechanism of cerebellar learning. Furthermore, it was found that the memory of adaptation is transferred from the FL to vestibular nuclei for consolidation by repetition of adaptation through the plasticity of vestibular nuclear neurons. In this article, after overviewing their cerebellar learning hypothesis, I discuss possible roles of LTD and LTP in gain-up and gain-down HVOR/HOKR adaptations and refer to the expansion of their hypothesis to cognitive functions.


Assuntos
Cerebelo , Aprendizagem , Animais , Masculino , Memória , Modelos Teóricos , Plasticidade Neuronal , Células de Purkinje , Coelhos , Reflexo Vestíbulo-Ocular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa