Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(3): e14438, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37849237

RESUMO

INTRODUCTION: Long-term spaceflight composite stress (LSCS) can cause adverse effects on human systems, including the central nervous system, which could trigger anxiety and depression. AIMS: This study aimed to identify changes in hippocampus synaptic plasticity under LSCS. METHODS: The present study simulated the real long-term space station environment by conducting a 42-day experiment that involved simulating microgravity, isolation, noise, circadian rhythm disruptions, and low pressure. The mood and behavior of the rats were assessed by behavior test. Transmission electron microscopy and patch-clamp were used to detect the changes in synapse morphology and electrophysiology, and finally, the expression of NMDA receptor channel proteins was detected by western blotting. RESULTS: The results showed that significant weight loss, anxiety, and depressive behaviors in rats were observed after being exposed to LSCS environment for 42 days. The synaptic structure was severely damaged, manifested as an obvious decrease in postsynaptic density thickness and synaptic interface curvature (p < 0.05; p < 0.05, respectively). Meanwhile, LTP was significantly impaired (p < 0.0001), and currents in the NMDAR channel were also significantly reduced (p < 0.0001). Further analysis found that LSCS decreased the expression of two key subtype proteins on this channel. CONCLUSION: These results suggested that LSCS-induced depressive behaviors by impairing synaptic plasticity in rat hippocampus.


Assuntos
Plasticidade Neuronal , Voo Espacial , Humanos , Ratos , Animais , Plasticidade Neuronal/fisiologia , Hipocampo , Sinapses , Receptores de N-Metil-D-Aspartato , Potenciação de Longa Duração/fisiologia
2.
Life Sci Space Res (Amst) ; 40: 135-142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245338

RESUMO

Long-term spaceflight composite stress (LSCS) can cause adverse effects on human systems, especially the central nervous system. This study aimed to identify the underlying mechanisms of the protective effect of Baoyuan Jieyu Formula (BYJYF) on LSCS-induced depressive-like behavior and memory deficits. In this experiment, we simulated the real space station environment for a period of 42 days. Novel object recognition test and forced swimming test were used to assess the memory abilities and depression level of rats as well as test the therapeutic effects of BYJYF treatment. Results showed LSCS could induce depressive-like behavior and damage short-term memory in the behavioral level, and BYJYF could enhance the ability to resist LSCS. Meanwhile, LSCS increased the levels of CRH, ACTH, and CORT and induced HPA axis hyperactivity, which can be relieved by BYJYF. Further, we predicted and verified the potential signaling pathways of BYJYF. Results showed BYJYF may reverse the inhibition of LSCS on Ca2+ channel currents. And we also found that BYJYF may exert its medicinal effects via four main active components including saikosaponin A. Overall, BYJYF exhibited protective effects against LSCS-induced depressive-like behavior and memory deficits, which might be ascribed to the regulation of Ca2+ channel currents and four active components. And it might become a promising candidate medicine for diseases induced by LSCS.


Assuntos
Depressão , Sistema Hipotálamo-Hipofisário , Humanos , Ratos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Memória de Curto Prazo/fisiologia
3.
Life Sci Space Res (Amst) ; 41: 136-145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670640

RESUMO

To systematically evaluate the effect of simulated long-term spaceflight composite stress (LSCS) in hippocampus and gain more insights into the transcriptomic landscape and molecular mechanism, we performed whole-transcriptome sequencing based on the control group (Ctrl) and the simulated long-term spaceflight composite stress group (LSCS) from six hippocampus of rats. Subsequently, differential expression analysis was performed on the Ctrl and LSCS groups, followed by enrichment analysis and functional interaction prediction analysis to investigate gene-regulatory circuits in LSCS. In addition, competitive endogenous RNA (ceRNA) network was constructed to gain insights into genetic interaction. The result showed that 276 differentially expressed messenger RNAs (DEmRNAs), 139 differentially expressed long non-coding RNAs (DElncRNAs), 103 differentially expressed circular RNAs (DEcircRNAs), and 52 differentially expressed microRNAs (DEmiRNAs) were found in LSCS samples compared with the controls, which were then subjected to enrichment analysis of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to find potential functions. PI3K-Akt signaling pathway and MAPK signaling pathway may play fundamental roles in the pathogenesis of LSCS. A ceRNA network was constructed with the predicted 340 DE pairs, which revealed the interaction roles of 220 DEmiRNA-DEmRNA pairs, 76 DEmiRNA-DElncRNA pairs, and 44 DEmiRNA-DEcircRNA pairs. Further, Thrombospondins2 was found to be a key target among those ceRNAs. Overall, we conducted for the first time a full transcriptomic analysis of the response of hippocampus to the LSCS that involved a potential ceRNA network, thus providing a basis to study the underlying mechanism of the LSCS.


Assuntos
Redes Reguladoras de Genes , Hipocampo , Transcriptoma , Animais , Ratos , Masculino , Hipocampo/metabolismo , RNA Longo não Codificante/genética , Estresse Fisiológico , MicroRNAs/genética , RNA Mensageiro/genética , Análise de Sequência de RNA , Ratos Sprague-Dawley , RNA Circular/genética , Perfilação da Expressão Gênica , RNA Endógeno Competitivo
4.
Front Physiol ; 14: 1322852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288353

RESUMO

Introduction: Long-term space missions trigger a prolonged neuroendocrine stress response leading to immune system dysregulation evidenced by susceptibility to infections, viral reactivation, and skin irritations. However, due to existing technical constraints, real-time functional immune assessments are not currently available to crew inflight. The in vitro cytokine release assay (CRA) has been effectively employed to study the stimulated cytokine response of immune cells in whole blood albeit limited to pre- and post-flight sessions. A novel two-valve reaction tube (RT) has been developed to enable the execution of the CRA on the International Space Station (ISS). Methods: In a comprehensive test campaign, we assessed the suitability of three materials (silicone, C-Flex, and PVC) for the RT design in terms of biochemical compatibility, chemical stability, and final data quality analysis. Furthermore, we thoroughly examined additional quality criteria such as safety, handling, and the frozen storage of antigens within the RTs. The validation of the proposed crew procedure was conducted during a parabolic flight campaign. Results: The selected material and procedure proved to be both feasible and secure yielding consistent and dependable data outcomes. This new hardware allows for the stimulation of blood samples on board the ISS, with subsequent analysis still conducted on the ground. Discussion: The resultant data promises to offer a more accurate understanding of the stress-induced neuroendocrine modulation of immunity during space travel providing valuable insights for the scientific community. Furthermore, the versatile nature of the RT suggests its potential utility as a testing platform for various other assays or sample types.

5.
Life Sci Space Res (Amst) ; 31: 34-42, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689948

RESUMO

During space flight, astronauts are exposed to various influences of extreme environments and susceptible to develop depression-like behavior. Thus, this study aims to explore the molecular biological mechanism of the cause of depression-like behavior and reveal the effect of Baoyuan Jieyu Formula (BYJYF) on ameliorating depression-like behavior. Here, rats exposed to simulated long-term spaceflight composite stress (LSCS) reduced the sucrose preference rate (P <0.01), and the time of forced swimming immobility and the number of climbing times were also reduced (P < 0.01, P < 0.001). Moreover, the number of neurons in the CA3 region of the hippocampus decreased ( P< 0.01, P < 0.05, P < 0.001), the staining became weak, and the Nissl body decreased. Antibody chip detected a total of 854 protein molecules in the hippocampus, of which 51 and 37 proteins were significantly different in the LSCS group and LSCS+BYJYF group, respectively, focusing on signaling pathways such as MAPK and neurotrophin. Western blot was used to verify the related proteins of these two pathways. Conclusively, simulated LSCS can induce depression-like behavior and neuronal damage. BYJYF can reduce neuronal apoptosis, and promote neuron survival by regulating the MAPK and the neurotrophin signaling pathway to protect neurons and combat LSCS.


Assuntos
Depressão , Voo Espacial , Animais , Fator Neurotrófico Derivado do Encéfalo , Depressão/tratamento farmacológico , Depressão/etiologia , Hipocampo , Ratos , Estresse Psicológico/tratamento farmacológico
6.
Microbiologyopen ; 8(12): e917, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31414557

RESUMO

Many studies have shown that the space environment can affect bacteria by causing a range of mutations. However, to date, few studies have explored the effects of long-term spaceflight (>1 month) on bacteria. In this study, a Staphylococcus warneri strain that was isolated from the Shenzhou-10 spacecraft and had experienced a spaceflight (15 days) was carried into space again. After a 64-day flight, combined phenotypic, genomic, transcriptomic, and proteomic analyses were performed to compare the influence of the two spaceflights on this bacterium. Compared with short-term spaceflight, long-term spaceflight increased the biofilm formation ability of S. warneri and the cell wall resistance to external environmental stress but reduced the sensitivity to chemical stimulation. Further analysis showed that these changes might be associated with the significantly upregulated gene expression of the phosphotransferase system, which regulates the metabolism of sugars, including glucose, mannose, fructose, and cellobiose. The mutation of S. warneri caused by the 15-day spaceflight was limited at the phenotype and gene level after cultivation on the ground. After 79 days of spaceflight, significant changes in S. warneri were observed. The phosphotransferase system of S. warneri was upregulated by long-term space stimulation, which resulted in a series of changes in the cell wall, biofilm, and chemical sensitivity, thus enhancing the resistance and adaptability of the bacterium to the external environment.


Assuntos
Metabolismo Energético , Ambientes Extremos , Voo Espacial , Staphylococcus/fisiologia , Antibacterianos/farmacologia , Biofilmes , Biologia Computacional/métodos , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica/métodos , Anotação de Sequência Molecular , Fenótipo , Proteômica/métodos , Staphylococcus/efeitos dos fármacos , Staphylococcus/ultraestrutura , Transcriptoma , Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa