Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.143
Filtrar
1.
Annu Rev Biochem ; 93(1): 21-46, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594943

RESUMO

DNA replication and transcription occur in all living cells across all domains of life. Both essential processes occur simultaneously on the same template, leading to conflicts between the macromolecular machines that perform these functions. Numerous studies over the past few decades demonstrate that this is an inevitable problem in both prokaryotic and eukaryotic cells. We have learned that conflicts lead to replication fork reversal, breaks in the DNA, R-loop formation, topological stress, and mutagenesis and can ultimately impact evolution. Recent studies have also provided insight into the various mechanisms that mitigate, resolve, and allow tolerance of conflicts and how conflicts result in pathological consequences across divergent species. In this review, we summarize our current knowledge regarding the outcomes of the encounters between replication and transcription machineries and explore how these clashes are dealt with across species.


Assuntos
Replicação do DNA , Transcrição Gênica , Humanos , Animais , Cromossomos/metabolismo , Cromossomos/genética , Cromossomos/química , Estruturas R-Loop , DNA/metabolismo , DNA/genética , DNA/química
2.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996487

RESUMO

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Assuntos
Genoma , Mamutes , Pele , Animais , Mamutes/genética , Genoma/genética , Feminino , Elefantes/genética , Cromatina/genética , Fósseis , DNA Antigo/análise , Camundongos , Humanos , Cromossomo X/genética
3.
Cell ; 187(13): 3390-3408.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754421

RESUMO

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.


Assuntos
Linfócitos T CD8-Positivos , Proteínas de Ligação a DNA , Interferon Tipo I , Proteínas de Membrana , Neoplasias , Transdução de Sinais , Fatores de Transcrição , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Mutação , Neoplasias/imunologia , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Masculino , Quimiocinas/genética , Quimiocinas/metabolismo
4.
Cell ; 186(24): 5269-5289.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995656

RESUMO

A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.


Assuntos
Cromatina , Genoma , Linfócitos B/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Humanos , Animais , Camundongos
5.
Cell ; 177(2): 326-338.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879787

RESUMO

Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.


Assuntos
Troca Genética/genética , Troca Genética/fisiologia , Animais , Núcleo Celular , Segregação de Cromossomos , Cromossomos/genética , Cromossomos/fisiologia , Simulação por Computador , Feminino , Genética Populacional/métodos , Recombinação Homóloga/genética , Humanos , Solanum lycopersicum/genética , Masculino , Meiose/genética , Recombinação Genética/genética , Complexo Sinaptonêmico
6.
Cell ; 170(4): 774-786.e19, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802045

RESUMO

Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states.


Assuntos
Replicação do DNA , Transcrição Gênica , Dano ao DNA , Período de Replicação do DNA , Instabilidade Genômica , Células HEK293 , Humanos , Plasmídeos
7.
Cell ; 171(2): 305-320.e24, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985562

RESUMO

The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Genoma Humano , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Elementos Facilitadores Genéticos , Código das Histonas , Humanos , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Fosfoproteínas/metabolismo , Coesinas
8.
Cell ; 170(4): 787-799.e18, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802046

RESUMO

Replication-transcription collisions shape genomes, influence evolution, and promote genetic diseases. Although unclear why, head-on transcription (lagging strand genes) is especially disruptive to replication and promotes genomic instability. Here, we find that head-on collisions promote R-loop formation in Bacillus subtilis. We show that pervasive R-loop formation at head-on collision regions completely blocks replication, elevates mutagenesis, and inhibits gene expression. Accordingly, the activity of the R-loop processing enzyme RNase HIII at collision regions is crucial for stress survival in B. subtilis, as many stress response genes are head-on to replication. Remarkably, without RNase HIII, the ability of the intracellular pathogen Listeria monocytogenes to infect and replicate in hosts is weakened significantly, most likely because many virulence genes are head-on to replication. We conclude that the detrimental effects of head-on collisions stem primarily from excessive R-loop formation and that the resolution of these structures is critical for bacterial stress survival and pathogenesis.


Assuntos
Bacillus subtilis/fisiologia , Replicação do DNA , Listeria monocytogenes/fisiologia , Transcrição Gênica , Animais , Período de Replicação do DNA , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Estresse Fisiológico , Virulência
9.
Mol Cell ; 84(1): 70-79, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38103560

RESUMO

Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.


Assuntos
Dano ao DNA , Replicação do DNA , Humanos , Reparo do DNA , DNA/genética , Genoma , Instabilidade Genômica , Transcrição Gênica
10.
Mol Cell ; 84(5): 822-838.e8, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38157845

RESUMO

Chromatin loops between gene pairs have been observed in diverse contexts in both flies and vertebrates. Combining high-resolution Capture-C, DNA fluorescence in situ hybridization, and genetic perturbations, we dissect the functional role of three loops between genes with related function during Drosophila embryogenesis. By mutating the loop anchor (but not the gene) or the gene (but not loop anchor), we disentangle loop formation and gene expression and show that the 3D proximity of paralogous gene loci supports their co-regulation. Breaking the loop leads to either an attenuation or enhancement of expression and perturbs their relative levels of expression and cross-regulation. Although many loops appear constitutive across embryogenesis, their function can change in different developmental contexts. Taken together, our results indicate that chromatin gene-gene loops act as architectural scaffolds that can be used in different ways in different contexts to fine-tune the coordinated expression of genes with related functions and sustain their cross-regulation.


Assuntos
Cromatina , Cromossomos , Animais , Hibridização in Situ Fluorescente , Cromatina/genética , Drosophila/genética
11.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640894

RESUMO

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , DNA Helicases/genética , Reparo do DNA por Junção de Extremidades
12.
Mol Cell ; 84(8): 1475-1495.e18, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521065

RESUMO

Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.


Assuntos
Cromatina , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
13.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569554

RESUMO

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Assuntos
Adenosina , Adenosina/análogos & derivados , RNA Helicases DEAD-box , Exorribonucleases , Instabilidade Genômica , Metiltransferases , Estruturas R-Loop , RNA Polimerase II , Terminação da Transcrição Genética , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Dano ao DNA , Células HeLa , RNA/metabolismo , RNA/genética , Transcrição Gênica , Metilação de RNA
14.
Annu Rev Biochem ; 85: 291-317, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27023844

RESUMO

Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.


Assuntos
Reparo do DNA , Instabilidade Genômica , Mutagênese , Neoplasias/genética , Doenças Neurodegenerativas/genética , Transcrição Gênica , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Simples , Replicação do DNA , Genoma Humano , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Conformação de Ácido Nucleico , Recombinação Genética
15.
Genes Dev ; 38(11-12): 504-527, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38986581

RESUMO

Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.


Assuntos
Instabilidade Genômica , Estruturas R-Loop , RNA , Instabilidade Genômica/genética , RNA/metabolismo , RNA/genética , Replicação do DNA/genética , Animais , Humanos , Transcrição Gênica/genética
16.
Cell ; 167(4): 1001-1013.e7, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881299

RESUMO

RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.


Assuntos
Instabilidade Genômica , Reparo de DNA por Recombinação , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , DNA/metabolismo , Dano ao DNA , Expressão Gênica , RNA/metabolismo , RNA Polimerase II/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Schizosaccharomyces/enzimologia
17.
Mol Cell ; 83(17): 3064-3079.e5, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37552993

RESUMO

CTCF is a critical regulator of genome architecture and gene expression that binds thousands of sites on chromatin. CTCF genomic localization is controlled by the recognition of a DNA sequence motif and regulated by DNA modifications. However, CTCF does not bind to all its potential sites in all cell types, raising the question of whether the underlying chromatin structure can regulate CTCF occupancy. Here, we report that R-loops facilitate CTCF binding through the formation of associated G-quadruplex (G4) structures. R-loops and G4s co-localize with CTCF at many genomic regions in mouse embryonic stem cells and promote CTCF binding to its cognate DNA motif in vitro. R-loop attenuation reduces CTCF binding in vivo. Deletion of a specific G4-forming motif in a gene reduces CTCF binding and alters gene expression. Conversely, chemical stabilization of G4s results in CTCF gains and accompanying alterations in chromatin organization, suggesting a pivotal role for G4 structures in reinforcing long-range genome interactions through CTCF.


Assuntos
Quadruplex G , Animais , Camundongos , Estruturas R-Loop , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Genômica , Sítios de Ligação
18.
Mol Cell ; 83(20): 3707-3719.e5, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37827159

RESUMO

R-loops, which consist of a DNA-RNA hybrid and a displaced DNA strand, are known to threaten genome integrity. To counteract this, different mechanisms suppress R-loop accumulation by either preventing the hybridization of RNA with the DNA template (RNA biogenesis factors), unwinding the hybrid (DNA-RNA helicases), or degrading the RNA moiety of the R-loop (type H ribonucleases [RNases H]). Thus far, RNases H are the only nucleases known to cleave DNA-RNA hybrids. Now, we show that the RNase DICER also resolves R-loops. Biochemical analysis reveals that DICER acts by specifically cleaving the RNA within R-loops. Importantly, a DICER RNase mutant impaired in R-loop processing causes a strong accumulation of R-loops in cells. Our results thus not only reveal a function of DICER as an R-loop resolvase independent of DROSHA but also provide evidence for the role of multi-functional RNA processing factors in the maintenance of genome integrity in higher eukaryotes.


Assuntos
Estruturas R-Loop , Ribonucleases , Humanos , Estruturas R-Loop/genética , Ribonucleases/genética , RNA/genética , DNA , Replicação do DNA , DNA Helicases/genética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Instabilidade Genômica
19.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002001

RESUMO

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Assuntos
Replicação do DNA , Mitose , Afidicolina/farmacologia , Proteína BRCA2/genética , Sítios Frágeis do Cromossomo/genética , DNA/genética , Dano ao DNA , Instabilidade Genômica , Humanos , Mitose/genética
20.
Mol Cell ; 82(10): 1894-1908.e5, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390275

RESUMO

miR-10b is silenced in normal neuroglial cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting role. We demonstrate that the entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-10b promoter and another with the remote enhancer. Knockdown of either lncRNA in glioma cells alters CTCF and cohesin binding, abolishes chromatin looping, inhibits the expression of all genes within HOXD locus, and leads to glioma cell death. Conversely, in cortical astrocytes, enhancer activation is sufficient for HOXD/miR-10b locus reorganization, gene derepression, and neoplastic cell transformation. LINC01116 RNA is essential for this process. Our results demonstrate the interplay of two lncRNAs in the chromatin folding and concordant regulation of miR-10b and multiple HOXD genes normally silenced in astrocytes and triggering the neoplastic glial transformation.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa