Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Vet Sci ; 9(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35737341

RESUMO

The objectives of the study were to estimate the repeatability of health and welfare traits and investigate their association with performance in three breeds of dairy goats reared under low-input farming systems in Greece. A total of 1210 goats of Eghoria (n = 418), Skopelos (n = 429), and Damascus (n = 363) breeds were assessed. Udder health, parasitic resistance, welfare, milk yield and quality, and body condition score were recorded monthly for two milking periods. Udder health records included somatic cell count (SCC) and total viable count (TVC). Based on combinations of SCC and TVC and thresholds set at >106 cells/mL and >2 × 104 cfu/mL, respectively, additional udder health phenotypes were defined. Parasitism included myiasis, tick infestation, gastrointestinal nematode (GIN) and cestode faecal egg count (FEC), and lungworm faecal larval count (FLC). Infection with each of the endoparasites was defined based on FEC/FLC. Welfare assessment parameters included the presence of ear and horn injuries, ocular and nasal discharge, body and udder abscesses, injury and lesions on the skin of different regions, diarrhoea, hernias, overgrown hooves, arthritis, lameness, and udder asymmetry. Trait repeatability and animal correlations were estimated. Significant (p < 0.05) repeatability was reported for all udder health and most welfare traits in all breeds, GIN and cestode FEC, and GIN and lungworm infection in Eghoria, and myiasis in Skopelos. Correlations of health and most of welfare traits with performance were non-significant or favourable. Overall, results demonstrate potential to improve health and welfare of the studied breeds without compromising performance.

2.
Plants (Basel) ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406861

RESUMO

Waxy starch with a modified amylose-to-amylopectin ratio is desired for a range of applications in food and non-food industries; however, yield performance and grain quality characteristics of waxy wheat cultivars are usually inferior in comparison to advanced non-waxy cultivars. In this study, we compared waxy ('Eldija', 'Sarta') and non-waxy ('Skagen', 'Suleva DS') winter wheat cultivars grown under high and low-input farming systems over two cropping seasons by evaluating their yield and grain quality, including flour, dough, and starch physicochemical properties. The yield of waxy cv. 'Sarta' was significantly lower compared to the non-waxy cultivars across all trials; however, waxy cv. 'Eldija' had a similar yield as non-waxy cultivars (except under high-input conditions cv. 'Skagen'). Moreover, no significant differences were observed between protein and gluten content of waxy and non-waxy cultivars. Low amylose content typical for waxy wheat cultivars highly correlated (r ≥ 0.8) with lower falling number, flour yield and sedimentation values, lower nitrogen % used for grain, higher flour water absorption and flour particle size index. In general, properties dependent on starch structure demonstrated consistent and significant differences between both starch types. The prevailing heat waves during the grain filling period decreased grain test weight but increased protein and gluten content and caused gluten to be weaker. Dough development time at these conditions became longer, dough softening lowered and starch content decreased, but A-starch, starch peak and final viscosity values increased. Low-input farming had a negative effect on grain yield, grain nitrogen uptake and grain test weight but increased phosphorus content in grain. The unique dough mixing properties of waxy cultivar 'Eldija' suggest that it could be used in mixtures along with non-waxy wheat for dough quality improvement.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34886587

RESUMO

Soil quality is directly affected by alterations in its microbiological, biological, biochemical, physical, and chemical aspects. The microbiological activities of soil can affect soil fertility and plant growth because it can speed up the cycling of nutrients, enzymes, and hormones that are needed by plants for proper growth and development. The use of different agricultural management practices can influence microbial biomass and enzyme activities by altering soil microclimate, soil microorganism habitat, and nutrient cycling. Based on this, the present work planned to evaluate the impact of conventional, low-input, and organic farming systems in a vegetable field growing celery on microbial biomass and different soil enzyme activities. The present study showed a comparison of the effect of different practices on biological soil quality indicators during two sampling times, i.e., one month after colonization and one month before harvesting. It was observed that the soil microbial biomass in the organic farming system was significantly higher than that found in conventional and low-input practices. Under an organic farming system, the soil microbial biomass in December was significantly higher than that in October. The soil microbial biomass carbon in the 0-20 cm soil layer showed higher variation compared to that in the 20-40 cm layer for all the three of the farming management practices that were used in the study. Additionally, the soil total carbon and total organic carbon were recorded as being higher in the December samples than they were in the October samples. Under all the three of the management practices that were applied, the soil catalase activity was higher in the October samples than it was in the December soil samples that were collected the from 20-40 cm soil layer compared to those that were taken from the 0-20 cm layer. The application of organic fertilizer (chicken and cowmanure compost) resulted inincreases in the soil urease and in the protease activity. The protease activity of the soil samples that were extracted from the 0-20 cm and 20-40 cm soil layers in October was higher in the samples that were taken from farms using conventional practices than it was in the samples that were taken from farms using organic and low-input practices, while the samples that were collected during December from both of the soil layers showed higher protease activity when organic methods had been used. No significant variation in the soil urease activity was observed between the two soil layer samples. Urease activity was the highest when organic management practices were being used, followed by the low-input and the conventional modes. For the conventional and low-input practices, the soil urease activity showed an obvious trend of change that was related to thetime of sampling, i.e., activity in December was significantly higher than activity in October. The novelty of this study was to determine the microbial biomass carbon and enzymatic activity in a six-field crop rotation (tomato, cucumber, celery, fennel, cauliflower, and eggplant) using three management practices: low-input, conventional, and organic systems. The present study showed that the long-term application of organic fertilizers plays a large role in maintaining excellent microbial and enzyme activitythat result in improved soil quality.


Assuntos
Apium , Solo , Agricultura , Biomassa , Carbono , Fazendas , Fertilizantes/análise , Microbiologia do Solo , Verduras
4.
Front Plant Sci ; 11: 1281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973840

RESUMO

Biochar is a rich-carbon charcoal obtained by pyrolysis of biomasses, which was used since antiquity as soil amendant. Its storage in soils was demonstrated contributing to abate the effects of climate changes by sequestering carbon, also providing bioenergy, and improving soil characteristics and crop yields. Despite interest in this amendant, there is still poor information on its effects on soil fertility and plant growth. Considerable variation in the plant response has been reported, depending on biomass source, pyrolysis conditions, crop species, and cultivation practices. Due to these conflicting evidences, this work was aimed at studying the effects of biochar from pyrolyzed wood at 550°C, containing 81.1% carbon and 0.91% nitrogen, on growth and yield of tomato plants experiencing low-input farming conditions. San Marzano ecotype from Southern Italy was investigated, due to its renowned quality and adaptability to sustainable farming practices. Biochar administration improved vegetative growth and berry yield, while affecting gene expression and protein repertoire in berries. Different enzymes of carbon metabolism and photosynthesis were over-represented, whereas various stress-responsive and defense proteins were down-represented. Molecular results are here discussed in relation to estimated agronomic parameters to provide a rationale justifying the growth-promoting effect of this soil amendant.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa