Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Res Vet Sci ; 159: 171-182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148736

RESUMO

This study aimed to investigate the expression of type VI collagen α3 chain (COL6a3) in neoplastic cells of canine mammary gland carcinomas (CMGCs) using immunohistochemistry (IHC) and to evaluate the association between COL6a3 expression and tumor histological features, histological grades, and the differentiation status of neoplastic epithelial cells. COL6a3 expression in carcinoma cells was significantly associated with histologically low malignancy and low mitotic indices. In addition, COL6a3+ carcinoma cells were more frequently detected in simple carcinomas (tubular and tubulopapillary types) than in solid carcinomas. These findings indicate that reduced expression of COL6a3 in carcinoma cells contributes to the malignant phenotype in CMGCs. We also showed that COL6a3 expression in the carcinoma cells was more frequently detected in CK19+/CD49f + and/or CK19+/CK5+ tumors. In addition, COL6a3+/CK19+/CD49f + and COL6a3+/CK19+/CK5+ tumors consisted of CK19+/CD49f + and CK19+/CD49f- cells, and CK19+/CK5+ and CK19+/CK5- cells, respectively. Most of these tumors more frequently expressed GATA3, but not Notch1. These results indicate that COL6a3 is expressed in CMGCs containing both luminal progenitor-like and mature luminal-like cells and showing differentiation ability into mature luminal cells. It is possible that COL6 may be involved in the differentiation of luminal progenitor-like carcinoma cells into mature luminal-like carcinoma cells in CMGCs, which may suppresses the development of malignant phenotypes in CMGCs.


Assuntos
Carcinoma , Doenças do Cão , Animais , Cães , Colágeno Tipo VI/genética , Integrina alfa6/genética , Carcinoma/patologia , Carcinoma/veterinária , Diferenciação Celular , Fenótipo , Doenças do Cão/metabolismo
2.
Biomedicines ; 10(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203681

RESUMO

GATA2 has been shown to be an important transcription factor together with androgen receptor (AR) in prostate cancer cells. Less is known about GATA2 in benign prostate epithelial cells. We have investigated if GATA2 exogenous expression in prostate epithelial basal-like cells could induce AR transcription or luminal differentiation. Prostate epithelial basal-like (transit amplifying) cells were transduced with lentiviral vector expressing GATA2. Luminal differentiation markers were assessed by RT-qPCR, Western blot and global gene expression microarrays. We utilized our previously established AR and androgen-dependent fluorescence reporter assay to investigate AR activity at the single-cell level. Exogenous GATA2 protein was rapidly and proteasome-dependently degraded. GATA2 protein expression was rescued by the proteasome inhibitor MG132 and partly by mutating the target site of the E3 ligase FBXW7. Moreover, MG132-mediated proteasome inhibition induced AR mRNA and additional luminal marker gene transcription in the prostate transit amplifying cells. Different types of intrinsic mechanisms restricted GATA2 expression in the transit amplifying cells. The appearance of AR mRNA and additional luminal marker gene expression changes following proteasome inhibition suggests control of essential cofactor(s) of AR mRNA expression and luminal differentiation at this proteolytic level.

3.
J Carcinog ; 10: 39, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22279424

RESUMO

INTRODUCTION: Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. MATERIALS AND METHODS: In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. RESULTS: The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. CONCLUSIONS: Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers.

4.
J Pathol Clin Res ; 7(3): 220-232, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33382535

RESUMO

Microglandular adenosis (MGA) represents a rare neoplasm of the mammary gland, which in a subset of cases may be associated with triple-negative breast cancer (BC). The biology of MGA is poorly understood. In this study, eight MGA cases (n = 4 with and n = 4 without associated BC) were subjected to a comprehensive characterization using immunohistochemistry, genome-wide DNA copy number (CN) profiling, fluorescence in situ hybridization (FISH), next-generation sequencing (NGS), and DNA methylation profiling using 850 K arrays and bisulfite pyrosequencing. Median patient age was 61 years (range 57-76 years). MGA lesions were estrogen receptor (ER)-negative, progesterone receptor-negative, HER2-negative, and S100-positive. DNA CN alterations (CNAs) were complex or limited to few gains and losses. CN gain on chromosome 2q was the most common CNA and was validated by FISH in five of eight cases. NGS demonstrated an average of two mutations per case (range 0-5) affecting 10 different genes (ARID1A, ATM, CTNNB1, FBXW7, FGFR2, MET, PIK3CA, PMS2, PTEN, and TP53). CNAs and mutations were similar in MGA and adjacent BC, indicating clonal relatedness. DNA methylation profiling identified aberrant hypermethylation of CpG sites within GATA3, a key transcription factor required for luminal differentiation. Immunohistochemistry showed regular GATA3 protein expression in the normal mammary epithelium and in ER-positive BC. Conversely, GATA3 was reduced or lost in all MGA cases tested (8/8). In conclusion, MGA is characterized by common CN gain on chromosome 2q and loss of GATA3. Epigenetic inactivation of GATA3 may provide a new clue to the peculiar biology of this rare neoplasia.


Assuntos
Biomarcadores Tumorais/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 2 , Metilação de DNA , Doença da Mama Fibrocística/genética , Fator de Transcrição GATA3/genética , Inativação Gênica , Lesões Pré-Cancerosas/genética , Neoplasias de Mama Triplo Negativas/genética , Idoso , Biomarcadores Tumorais/análise , Feminino , Doença da Mama Fibrocística/química , Doença da Mama Fibrocística/patologia , Humanos , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Neoplasias de Mama Triplo Negativas/química , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa