Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biol Chem ; 403(2): 151-194, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34433238

RESUMO

The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.


Assuntos
Lisina , Sirtuínas , Acetilação , Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo
2.
Int J Mol Sci ; 21(22)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203121

RESUMO

The protein acetylation of either the α-amino groups of amino-terminal residues or of internal lysine or cysteine residues is one of the major posttranslational protein modifications that occur in the cell with repercussions at the protein as well as at the metabolome level. The lysine acetylation status is determined by the opposing activities of lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), which add and remove acetyl groups from proteins, respectively. A special group of KDACs, named sirtuins, that require NAD+ as a substrate have received particular attention in recent years. They play critical roles in metabolism, and their abnormal activity has been implicated in several diseases. Conversely, the modulation of their activity has been associated with protection from age-related cardiovascular and metabolic diseases and with increased longevity. The benefits of either activating or inhibiting these enzymes have turned sirtuins into attractive therapeutic targets, and considerable effort has been directed toward developing specific sirtuin modulators. This review summarizes the protein acylation/deacylation processes with a special focus on the current developments in the sirtuin research field.


Assuntos
Envelhecimento/metabolismo , Doenças Cardiovasculares/enzimologia , Doenças Metabólicas/enzimologia , Processamento de Proteína Pós-Traducional , Sirtuínas/metabolismo , Acetilação , Humanos
3.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003340

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The neuropathological features of PD are selective and progressive loss of dopaminergic neurons in the substantia nigra pars compacta, deficiencies in striatal dopamine levels, and the presence of intracellular Lewy bodies. Interactions among aging and genetic and environmental factors are considered to underlie the common etiology of PD, which involves multiple changes in cellular processes. Recent studies suggest that changes in lysine acetylation and deacetylation of many proteins, including histones and nonhistone proteins, might be tightly associated with PD pathogenesis. Here, we summarize the changes in lysine acetylation of both histones and nonhistone proteins, as well as the related lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), in PD patients and various PD models. We discuss the potential roles and underlying mechanisms of these changes in PD and highlight that restoring the balance of lysine acetylation/deacetylation of histones and nonhistone proteins is critical for PD treatment. Finally, we discuss the advantages and disadvantages of different KAT/KDAC inhibitors or activators in the treatment of PD models and emphasize that SIRT1 and SIRT3 activators and SIRT2 inhibitors are the most promising effective therapeutics for PD.


Assuntos
Lisina Acetiltransferases/genética , Lisina/genética , Doença de Parkinson/genética , Sirtuína 1/genética , Sirtuína 3/genética , Acetilação , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Histonas/genética , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Processamento de Proteína Pós-Traducional/genética
4.
Med Res Rev ; 38(1): 147-200, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094444

RESUMO

Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.


Assuntos
Histona Desacetilases do Grupo III/antagonistas & inibidores , Histona Desacetilases do Grupo III/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Animais , Humanos , Terapia de Alvo Molecular
5.
Biochim Biophys Acta ; 1852(10 Pt A): 2183-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163995

RESUMO

Sirtuins are a conserved family of NAD(+)-dependent class III lysine deacetylases, known to regulate longevity. In mammals, the sirtuin family has seven members (SIRT1-7), which vary in enzymatic activity, subcellular distribution and targets. Pharmacological and genetic modulation of SIRTs has been widely spread as a promising approach to slow aging and neurodegenerative processes. Huntington's disease (HD) is a neurodegenerative disorder linked to expression of polyglutamine-expanded huntingtin (HTT) protein for which there is still no disease-reversing treatment. Studies in different animal models provide convincing evidence that SIRT1 protects both cellular and animal models from mutant HTT toxicity, however controversial results were recently reported. Indeed, as a consequence of a variety of SIRT-activation pathways, either activation or inhibition of a specific SIRT appears to be neuroprotective. Therefore, this review summarizes the recent progress and knowledge in sirtuins (particularly SIRT1-3) and their implications for HD treatment.

6.
Adv Exp Med Biol ; 854: 39-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427391

RESUMO

Recent data have revealed epigenetic derangements and subsequent chromatin remodeling as a potent biologic switch for chronic inflammation and cell survival which are important therapeutic targets in the pathogenesis of several retinal degenerations. Histone deacetylases (HDACs) are a major component of this system and serve as a unique control of the chromatin remodeling process. With a multitude of targeted HDAC inhibitors now available, their use in both basic science and clinical studies has widened substantially. In the field of ocular biology, there are data to suggest that HDAC inhibition may suppress neovascularization and may be a possible treatment for retinitis pigmentosa and dry age-related macular degeneration (AMD). However, the effects of these inhibitors on cell survival and chemokine expression in the chorioretinal tissues remain very unclear. Here, we review the multifaceted biology of HDAC activity and pharmacologic inhibition while offering further insight into the importance of this epigenetic pathway in retinal degenerations. Our laboratory investigations aim to open translational avenues to advance dry AMD therapeutics while exploring the role of acetylation on inflammatory gene expression in the aging and degenerating retina.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Degeneração Retiniana/prevenção & controle , Acetilação/efeitos dos fármacos , Animais , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/prevenção & controle , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
7.
Future Med Chem ; 15(3): 291-311, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36892013

RESUMO

The silent information regulator (sirtuin) is a family of enzymes involved in epigenetic processes with lysine deacetylase activity, having as substrates histones and other proteins. They participate in a wide range of cellular and pathologic processes, such as gene expression, cell division and motility, oxidative-induced stress management, metabolic control and carcinogenesis, among others, thus presenting as interesting therapeutic targets. In this article, the authors describe the inhibitory mechanisms and binding modes of the human sirtuin 2 (hSIRT2) inhibitors, which had their complexes with the enzyme structurally characterized. The results help pave the way for the rational designing of new hSIRT2 inhibitors and the development of novel therapeutic agents targeting this epigenetic enzyme.


Assuntos
Inibidores de Histona Desacetilases , Sirtuína 2 , Humanos , Inibidores de Histona Desacetilases/química , Histonas/metabolismo
8.
Viruses ; 14(8)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-36016356

RESUMO

Sirtuin 1 (SIRT1), a member of the class III lysine deacetylases, exhibits powerful functional diversity in physiological processes and disease occurrences. However, the potential molecular mechanism underlying the role of SIRT1 during viral infection in crustaceans is poorly understood. Herein, SIRT1 was functionally characterized from the red claw crayfish Cherax quadricarinatus, which possesses typically conserved deacetylase domains and strong evolutionary relationships across various species. Moreover, gene knockdown of CqSIRT1 in crayfish haematopoietic tissue (Hpt) cell culture inhibited white spot syndrome virus (WSSV) late envelope gene vp28 transcription. In contrast, enhancement of deacetylase activity using a pharmacological activator promoted the replication of WSSV. Mechanically, CqSIRT1 was co-localized with viral envelope protein VP28 in the nuclei of Hpt cells and directly bound to VP28 with protein pulldown and co-immunoprecipitation assays. Furthermore, CqSIRT1 also interacted with another two viral envelope proteins, VP24 and VP26. To the best of our knowledge, this is the first report that WSSV structural proteins are linked to lysine deacetylases, providing a better understanding of the role of CqSIRT1 during WSSV infection and novel insights into the basic mechanism underlying the function of lysine deacetylases in crustaceans.


Assuntos
Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes/genética , Astacoidea/genética , Astacoidea/metabolismo , Lisina , Sirtuína 1/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírus da Síndrome da Mancha Branca 1/genética
9.
Cell Rep ; 39(4): 110736, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476995

RESUMO

The deacetylase HDAC6 has tandem catalytic domains and a zinc finger domain (ZnF) binding ubiquitin (Ub). While the catalytic domain has an antiviral effect, the ZnF facilitates influenza A virus (IAV) infection and cellular stress responses. By recruiting Ub via the ZnF, HDAC6 promotes the formation of aggresomes and stress granules (SGs), dynamic structures associated with pathologies such as neurodegeneration. IAV subverts the aggresome/HDAC6 pathway to facilitate capsid uncoating during early infection. To target this pathway, we generate designed ankyrin repeat proteins (DARPins) binding the ZnF; one of these prevents interaction with Ub in vitro and in cells. Crystallographic analysis shows that it blocks the ZnF pocket where Ub engages. Conditional expression of this DARPin reversibly impairs infection by IAV and Zika virus; moreover, SGs and aggresomes are downregulated. These results validate the HDAC6 ZnF as an attractive target for drug discovery.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecção por Zika virus , Zika virus , Desacetilase 6 de Histona/metabolismo , Humanos , Vírus da Influenza A/metabolismo , Ubiquitina/metabolismo , Zika virus/metabolismo
10.
Front Microbiol ; 12: 757179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721364

RESUMO

Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains' size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.

11.
Curr Protoc ; 1(11): e277, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34748287

RESUMO

Proteins can be lysine-acetylated both enzymatically, by lysine acetyltransferases (KATs), and non-enzymatically, by acetyl-CoA and/or acetyl-phosphate. Such modification can be reversed by lysine deacetylases classified as NAD+ -dependent sirtuins or by classical Zn2+ -dependent deacetylases (KDACs). The regulation of protein lysine acetylation events by KATs and sirtuins/KDACs, or by non-enzymatic processes, is often assessed only indirectly by mass spectrometry or by mutational studies in cells. Mutational approaches to study lysine acetylation are limited, as these often poorly mimic lysine acetylation. Here, we describe protocols to assess the direct regulation of protein lysine acetylation by both sirtuins/KDACs and KATs, as well as non-enzymatically. We first describe a protocol for the production of site-specific lysine-acetylated proteins using a synthetic biological approach, the genetic code expansion concept (GCEC). These natively folded, lysine-acetylated proteins can then be used as direct substrates for sirtuins and KDACs. This approach addresses various limitations encountered with other methods. First, results from sirtuin/KDAC-catalyzed deacetylation assays obtained using acetylated peptides as substrates can vary considerably compared to experiments using natively folded substrate proteins. In addition, producing lysine-acetylated proteins for deacetylation assays by using recombinantly expressed KATs is difficult, as these often do not yield proteins that are homogeneously and quantitatively lysine acetylated. Moreover, KATs are often huge multi-domain proteins, which are difficult to recombinantly express and purify in soluble form. We also describe protocols to study the direct regulation of protein lysine acetylation, both enzymatically, by sirtuins/KDACs and KATs, and non-enzymatically, by acetyl-CoA and/or acetyl-phosphate. The latter protocol also includes a section that explains how specific lysine acetylation sites can be detected by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The protocols described here can be useful for providing a more detailed understanding of the enzymatic and non-enzymatic regulation of lysine acetylation sites, an important aspect to judge their physiological significance. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of N-(ε)-lysine-acetylated proteins using the genetic code expansion concept (GCEC) Basic Protocol 2: In vitro sirtuin (SIRT)-catalyzed deacetylation of lysine-acetylated proteins prepared by the GCEC Basic Protocol 3: In vitro KDAC/HDAC-catalyzed deacetylation of lysine-acetylated proteins Basic Protocol 4: In vitro lysine acetylation of recombinantly expressed proteins by lysine acetyltransferases (KATs) Basic Protocol 5: In vitro non-enzymatic lysine acetylation of proteins by acetyl-CoA and/or acetyl-phosphate.


Assuntos
Lisina Acetiltransferases , Lisina , Acetilação , Cromatografia Líquida , Lisina/metabolismo , Lisina Acetiltransferases/metabolismo , Espectrometria de Massas em Tandem
12.
Methods Mol Biol ; 2247: 319-337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33301126

RESUMO

Lysine acetylation is a ubiquitous modification permeating the proteomes of organisms from all domains of life. Lysine deacetylases (KDACs) reverse this modification by following two fundamentally different enzymatic mechanisms, which differ mainly by the need for NAD+ as stoichiometric co-substrate. KDACs are often found as catalytic subunit in protein complexes involved in cell cycle regulation, chromatin organization and transcription. Their promiscuity with respect to sequence context and type of lysine acylation convolutes the network of functional and physical connections.Here we present an efficient selection method for KDACs in E. coli, which allows for the creation of acyl-type specific KDAC variants, which greatly facilitate the investigation of their physiological function . The selection system builds on the incorporation of acylated lysines by genetic code expansion in reporter enzymes with essential lysine residues. We describe the creation of KDAC mutant libraries by saturation mutagenesis of active site residues, the isolation of individual mutants from this library using the selection system, and their biochemical characterization with acylated firefly luciferase.


Assuntos
Evolução Biológica , Histona Desacetilases/química , Lisina/química , Acetilação , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Códon , Evolução Molecular , Citometria de Fluxo , Biblioteca Gênica , Genes Reporter , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Lisina/metabolismo , Mutação , Processamento de Proteína Pós-Traducional
13.
Exp Ther Med ; 20(4): 2923-2940, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32855658

RESUMO

Cells primarily rely on proteins to perform the majority of their physiological functions, and the function of proteins is regulated by post-translational modifications (PTMs). The acetylation of proteins is a dynamic and highly specific PTM, which has an important influence on the functions of proteins, such as gene transcription and signal transduction. The acetylation of proteins is primarily dependent on lysine acetyltransferases and lysine deacetylases. In recent years, due to the widespread use of mass spectrometry and the emergence of new technologies, such as protein chips, studies on protein acetylation have been further developed. Compared with histone acetylation, acetylation of non-histone proteins has gradually become the focus of research due to its important regulatory mechanisms and wide range of applications. The discovery of specific protein acetylation sites using bioinformatic tools can greatly aid the understanding of the underlying mechanisms of protein acetylation involved in related physiological and pathological processes.

14.
J Proteomics ; 195: 114-124, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30660770

RESUMO

KDAC inhibitors (KDACi) overcome gefitinib primary resistance in non-small cell lung cancer (NSCLC) including mutant-KRAS lung adenocarcinoma. To identify which proteins are involved in the restoration of this sensitivity and to provide new therapeutic targets for mutant-KRAS lung adenocarcinoma, we performed an iTRAQ quantitative proteomic analysis after subcellular fractionation of H358-NSCLC treated with gefitinib and KDACi (TSA/NAM) versus gefitinib alone. The 86 proteins found to have been significantly dysregulated between the two conditions, were mainly involved in cellular metabolism and cell transcription processes. As expected, the pathway related to histone modifications was affected by the KDACi. Pathways known for controlling tumor development and (chemo)-resistance (miRNA biogenesis/glutathione metabolism) were affected by the KDACi/gefitinib treatment. Moreover, 57 dysregulated proteins were upstream of apoptosis (such as eEF1A2 and STAT1) and hence provide potential therapeutic targets. The inhibition by siRNA of eEF1A2 expression resulted in a slight decrease in H358-NSCLC viability. In addition, eEF1A2 and STAT1 siRNA transfections suggested that both STAT1 and eEF1A2 prevent AKT phosphorylation known for enhancing gefitinib resistance in NSCLC. Therefore, altogether our data provide new insights into proteome regulations in the context of overcoming the NSCLC resistance to gefitinib through KDACi in H358 KRAS mutated and amphiregulin-overexpressing NSCLC cells.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Mutação , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
15.
J Proteomics ; 150: 297-309, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27746255

RESUMO

Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.


Assuntos
Lisina/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Acetilação , Humanos , Proteínas Nucleares/metabolismo
16.
Am J Cancer Res ; 5(4): 1337-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101701

RESUMO

Standard combined modality therapies for aerodigestive tract malignancies have suboptimal outcomes, and targeting cancer-specific molecular pathways in combination with radiation could improve the therapeutic ratio. Dysregulation of epigenetic modulators such as histone deacetylases (HDACs), and developmental morphogens such as the hedgehog (HH) pathway have been implicated in aerodigestive tumor progression and metastasis. We hypothesized that simultaneous targeting of HDACs and the HH-pathway mediator Smoothened (Smo) represents an opportunity to overcome therapeutic resistance in these cancers. We evaluated the effects of the HDAC inhibitor SAHA and Smo inhibitor GDC-0449 with radiation in multiple aerodigestive cancer cell lines. Isobologram analyses showed that SAHA and GDC-0449 synergistically suppressed cancer cell proliferation in vitro. SAHA and GDC-0449 cooperatively enhanced G0/G1 cell cycle arrest which was associated with up-regulation of p21(waf). GDC-0449 prevented SAHA-induced up-regulation of Gli-1 and Gli-2. Both Smo and Ptc-1 expression was cooperatively suppressed by SAHA and GDC-0449. The combination of SAHA and GDC-0449 induced radiation sensitization with 2 Gy as determined by colony formation assays and cytogenetic analyses, which correlated with higher residual γ-H2AX and 53BP1 foci. In mouse tumor xenografts of the SqCC/Y1 cell line, SAHA and GDC-0449 delayed tumor growth longer and prolonged survival more than either agent alone. In summary, we have identified synergistic effect of HDAC and HH signaling for radiosensitization to improve therapeutic outcomes for aerodigestive malignancies.

17.
Front Microbiol ; 6: 96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25762988

RESUMO

Invasive aspergillosis (IA) is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B) or cell wall (echinocandins) are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs) are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90), an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed.

18.
ChemMedChem ; 9(3): 511-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24449617

RESUMO

Protein lysine deacetylases (KDACs), including the classic Zn(2+) -dependent histone deacetylases (HDACs) and the nicotinamide adenine dinucleotide (NAD(+) )-requiring sirtuins, are enzymes that play critical roles in numerous biological processes, particularly the epigenetic regulation of global gene expression programs in response to internal and external cues. Dysregulation of KDACs is characteristic of several human diseases, including chronic metabolic, neurodegenerative, and cardiovascular diseases and many cancers. This has led to the development of KDAC modulators, two of which (HDAC inhibitors vorinostat and romidepsin) have been approved for the treatment of cutaneous T cell lymphoma. By their nature, existing KDAC modulators are relatively nonspecific, leading to pan-KDAC changes and undesired side effects. Given that KDACs are regulated at many levels, including transcriptional, post-translational, subcellular localization, and through their complexation with other proteins, it should be possible to affect specific KDAC activity through manipulation of endogenous signaling pathways. In this Minireview, we discuss our present knowledge of the cellular controls of KDAC activity and examples of their pharmacologic regulation.


Assuntos
Histona Desacetilases/metabolismo , Lisina/metabolismo , Sirtuínas/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Lisina/química , Estrutura Molecular , Sirtuínas/antagonistas & inibidores , Sirtuínas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa