Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 129(4): 292-302, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033912

RESUMO

Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPßCD treatment. In an intravenous (IV) HPßCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Fosforilcolina/sangue , Fosforilcolina/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Gatos , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem , Resultado do Tratamento , Adulto Jovem
2.
J Lipid Res ; 60(8): 1410-1424, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201291

RESUMO

Niemann-Pick disease type C1 (NPC1) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, there is an urgency to improve diagnostics and monitor therapeutic efficacy with biomarkers. In this study, we sought to define the structure of an unknown lipid biomarker for NPC1 with [M + H]+ ion at m/z 509.3351, previously designated as lysoSM-509. The structure of N-palmitoyl-O-phosphocholineserine (PPCS) was proposed for the lipid biomarker based on the results from mass spectrometric analyses and chemical derivatizations. As no commercial standard is available, authentic PPCS was chemically synthesized, and the structure was confirmed by comparison of endogenous and synthetic compounds as well as their derivatives using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPCS is the most abundant species among N-acyl-O-phosphocholineserines (APCS), a class of lipids that have not been previously detected in biological samples. Further analysis demonstrated that all APCS species with acyl groups ranging from C14 to C24 were elevated in NPC1 plasma. PPCS is also elevated in both central and peripheral tissues of the NPC1 cat model. Identification of APCS structures provide an opportunity for broader exploration of the roles of these novel lipids in NPC1 disease pathology and diagnosis.


Assuntos
Doença de Niemann-Pick Tipo C/metabolismo , Fosforilcolina/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Doença de Niemann-Pick Tipo C/genética
3.
Mol Syndromol ; 14(1): 30-34, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36777709

RESUMO

Introduction: Neuronal ceroid lipofuscinoses (NCLs) are a broad class of inherited lysosomal storage disorders. Known mutations in at least 13 different genes can result in NCL with variable ages of onset, symptoms, and pathologic findings. Generally, these patients experience cognitive and motor decline, seizures, visual impairment, and premature death. Pathologically, NCL patients display heterogeneous histologic abnormalities, but consistently exhibit neuronal loss, reactive gliosis, and lysosomal accumulation of autofluorescent storage material or lipopigment. Juvenile-onset NCL has been classically referred to as Batten disease. By far the most prevalent NCL is CLN3-associated disease. It is an autosomal recessive condition that is usually caused by mutations in the ceroid-lipofuscinosis, neuronal 3 (CLN3) gene. CLN3 encodes battenin, a ubiquitously expressed transmembrane protein of unknown function that is associated with cellular homeostasis and neuronal survival. The initial clinical symptom of CLN3-associated NCL is central vision loss, which is usually detected between 4 and 9 years of age. Seizures typically begin early in the second decade of life, and affected individuals rarely live beyond their mid-20ies. Case Presentation: Herein, we describe a 16-year-old patient with CLN3-related juvenile NCL with a preliminary diagnosis of Niemann Pick Type C disease. The proband showed characteristic clinical signs, including epilepsy, ataxia, psychomotor regression, dementia, and visual impairment with an unusual elevation of lyso-sphingomyelin-509 (Lyso-SM-509; 812 nmol/L, normal 1-33 nmol/L). A homozygous NM_001042432.2(CLN3):c.233dup (p.Thr80fs) variant was detected at exon 4 of CLN3. Diagnosis of NCL was difficult due to the pronounced elevation of LysoSM-509. Discussion: LysoSM-509 is a biomarker which is elevated especially in Niemann Pick Type C. We can consider that a high LysoSM-509 level might be also an indicator of NCL, especially NCL type 3.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa