Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38006043

RESUMO

The emergence of Omicron variants coincided with declining vaccine-induced protection against SARS-CoV-2. Two bivalent mRNA vaccines, mRNA-1273.222 (Moderna) and BNT162b2 Bivalent (Pfizer-BioNTech), were developed to provide greater protection against the predominate circulating variants by including mRNA that encodes both the ancestral (original) strain and BA.4/BA.5. We estimated their relative vaccine effectiveness (rVE) in preventing COVID-19-related outcomes in the US using a nationwide dataset linking primary care electronic health records and pharmacy/medical claims data. The study population (aged ≥18 years) received either vaccine between 31 August 2022 and 28 February 2023. We used propensity score weighting to adjust for baseline differences between groups. We estimated the rVE against COVID-19-related hospitalizations (primary outcome) and outpatient visits (secondary) for 1,034,538 mRNA-1273.222 and 1,670,666 BNT162b2 Bivalent vaccine recipients, with an adjusted rVE of 9.8% (95% confidence interval: 2.6-16.4%) and 5.1% (95% CI: 3.2-6.9%), respectively, for mRNA-1273.222 versus BNT162b2 Bivalent. The incremental relative effectiveness was greater among adults ≥ 65; the rVE against COVID-19-related hospitalizations and outpatient visits in these patients was 13.5% (95% CI: 5.5-20.8%) and 10.7% (8.2-13.1%), respectively. Overall, we found greater effectiveness of mRNA-1273.222 compared with the BNT162b2 Bivalent vaccine in preventing COVID-19-related hospitalizations and outpatient visits, with increased benefits in older adults.

2.
Viruses ; 14(11)2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36366586

RESUMO

The wild-type SARS-CoV-2 Spike-based vaccines authorized so far have reduced COVID-19 severity, but periodic boosts are required to counteract the decline in immunity. An accelerated rate of immune escape to vaccine-elicited immunity has been associated with Spike protein antigenic shifts, as seen in the Omicron variant of concern and its sublineages, demanding the development of Omicron Spike-based vaccines. Herein, we review the evidence in animal models and topline results from ongoing clinical trials with such updated vaccines, discussing the pros and cons for their deployment.


Assuntos
COVID-19 , Vacinas , Animais , Humanos , Vacinas contra COVID-19 , Proteínas do Envelope Viral/metabolismo , Anticorpos Antivirais/metabolismo , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa