RESUMO
The mammalian target of rapamycin (mTOR) has been proved to be an effective target for cancer therapy. Two kinds of mTOR inhibitors, the rapalogs and mTOR kinase inhibitors (TORKi), have been developed and clinically validated in several types of malignancies. Compared with rapalogs, TORKi can exert better antitumor activity by inhibiting both mTORC1 and mTORC2, but the clinical development of current TORKi candidates has been relative slow, more TORKi with novel scaffold need to be developed to expand the current pipelines. In this study, a series of 9-methyl-9H-purine and thieno[3, 2-d]pyrimidine derivatives were designed, synthesized and biological evaluation. Most of these compounds exhibited good mTOR kinase inhibitory activity and selectivity over PI3Kα. Subsequent antiproliferative assay allowed us to identify the lead compound 15i, which display nanomolar to low micromolar IC50s against six human cancer cell lines. 15i could induce cell cycle arrest of MCF-7, PC-3 and A549 cells at the G0/G1 phase and suppress the migration and invasion of these cancer cells by suppressing the phosphorylation of AKT and P70S6 kinase. It could also regulate autophagy-related proteins to induce autophagy. Therefore, 15i would be a starting point for the development of new TORKi as anticancer drug.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de MTOR , Inibidores de Proteínas Quinases , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/tratamento farmacológico , Purinas/farmacologia , Pirimidinas , Proliferação de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-AtividadeRESUMO
Approximately 50-80% of children with autism spectrum disorders (ASDs) exhibit sleep problems, but the contribution of circadian clock dysfunction to the development of ASDs remains largely unknown. The essential clock gene Bmal1 (Arntl or Mop3) has been associated with human sociability, and its missense mutation is found in ASD. Our recent study found that Bmal1-null mice exhibit a variety of autism-like phenotypes. Here, we further investigated whether an incomplete loss of Bmal1 function could cause significant autism-like behavioral changes in mice. Our results demonstrated that heterozygous Bmal1 deletion (Bmal1+/-) reduced the Bmal1 protein levels by ~50-75%. Reduced Bmal1 expression led to decreased levels of clock proteins, including Per1, Per2, Cry 1, and Clock but increased mTOR activities in the brain. Accordingly, Bmal1+/- mice exhibited aberrant ultrasonic vocalizations during maternal separation, deficits in sociability and social novelty, excessive repetitive behaviors, impairments in motor coordination, as well as increased anxiety-like behavior. The novel object recognition memory remained intact. Together, these results demonstrate that haploinsufficiency of Bmal1 can cause autism-like behavioral changes in mice, akin to those identified in Bmal1-null mice. This study provides further experimental evidence supporting a potential role for disrupted clock gene expression in the development of ASD.
Assuntos
Transtorno Autístico , Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Transtorno Autístico/genética , Encéfalo/metabolismo , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Haploinsuficiência , Privação Materna , Camundongos , Camundongos Knockout , Fenótipo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
The diverse signaling pathways engaged by serotonin type 6 receptor (5-HT6R) together with its high constitutive activity suggests different types of pharmacological interventions for the treatment of CNS disorders. Non-physiological activation of mTOR kinase by constitutively active 5-HT6R under neuropathic pain conditions focused our attention on the possible repurposing of 5-HT6R inverse agonists as a strategy to treat painful symptoms associated with neuropathies of different etiologies. Herein, we report the identification of compound 33 derived from the library of 2-aryl-1H-pyrrole-3-carboxamides as a potential analgesic agent. Compound 33 behaves as a potent 5-HT6R inverse agonist at Gs, Cdk5, and mTOR signaling. Preliminary ADME/Tox studies revealed preferential distribution of 33 to the CNS and placed it in the low-risk safety space. Finally, compound 33 dose-dependently reduced tactile allodynia in spinal nerve ligation (SNL)-induced neuropathic rats.
Assuntos
Neuralgia/tratamento farmacológico , Pirróis/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Masculino , Estrutura Molecular , Pirróis/química , Pirróis/metabolismo , Ratos , Ratos Wistar , Antagonistas da Serotonina/química , Antagonistas da Serotonina/metabolismo , Relação Estrutura-AtividadeRESUMO
This work describes the synthesis, enzymatic activities on PI3K and mTOR, in silico docking and cellular activities of various uncommon 2,4,7 trisubstituted pyrido[3,2-d]pyrimidines. The series synthesized offers a chemical diversity in C-7 whereas C-2 (3-hydroxyphenyl) and C-4 groups (morpholine) remain unchanged, in order to provide a better understanding of the molecular determinants of PI3K selectivity or dual activity on PI3K and mTOR. Some C-7 substituents were shown to improve the efficiency on kinases compared to the 2,4-di-substituted pyrimidopyrimidine derivatives used as references. Six novel derivatives possess IC50 values on PI3Kα between 3 and 10 nM. The compounds with the best efficiencies on PI3K and mTOR induced micromolar cytotoxicity on cancer cell lines possessing an overactivated PI3K pathway.
Assuntos
Desenho de Fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismoRESUMO
mTOR/MEK bifunctional inhibitors have the potential to surmount the drug resistance aroused from cross talk between PI3K/Akt/mTOR (PAM) and Ras/MEK/ERK pathways. Herein, we report the discovery of a conjugated dual-targeted molecule, compound 13, as the prototype mTOR/MEK bifunctional inhibitor. It exhibited moderately high inhibitory activity against mTOR and MEK1 with IC50 values of 0.19 µM and 0.98 µM, respectively. In particular, it displayed attractive antiproliferative activity against both A549 (GI50 = 4.66 µM) and HCT116 (GI50 = 5.47 µM) cell lines. To our knowledge, it has been the first example of a conjugated mTOR/MEK bifunctional inhibitor. In addition, from this proof-of-principle study, it has become evident that the single-agent dual inhibition of mTOR and MEK can be fulfilled via covalently attaching mTOR kinase inhibitor to an allosteric MEK inhibitor.
RESUMO
Mammalian target of rapamycin (mTOR) has a pivotal role in carcinogenesis and cancer cell proliferation in diverse human cancers. In this study, we observed that epimagnolin, a natural compound abundantly found in Shin-Yi, suppressed cell proliferation by inhibition of epidermal growth factor (EGF)-induced G1/S cell-cycle phase transition in JB6 Cl41 cells. Interestingly, epimagnolin suppressed EGF-induced Akt phosphorylation strongly at Ser473 and weakly at Thr308 without alteration of phosphorylation of MAPK/ERK kinases (MEKs), extracellular signal-regulated kinase (ERKs), and RSK1, resulting in abrogation of the phosphorylation of GSK3ß at Ser9 and p70S6K at Thr389. Moreover, we found that epimagnolin suppressed c-Jun phosphorylation at Ser63/73, resulting in the inhibition of activator protein 1 (AP-1) transactivation activity. Computational docking indicated that epimagnolin targeted an active pocket of the mTOR kinase domain by forming three hydrogen bonds and three hydrophobic interactions. The prediction was confirmed by using in vitro kinase and adenosine triphosphate-bead competition assays. The inhibition of mTOR kinase activity resulted in the suppression of anchorage-independent cell transformation. Importantly, epimagnolin efficiently suppressed cell proliferation and anchorage-independent colony growth of H1650 rather than H460 lung cancer cells with dependency of total and phosphorylated protein levels of mTOR and Akt. Inhibitory signaling of epimagnolin on cell proliferation of lung cancer cells was observed mainly in mTOR-Akt-p70S6K and mTOR-Akt-GSK3ß-AP-1, which was similar to that shown in JB6 Cl41 cells. Taken together, our results indicate that epimagnolin potentiates as chemopreventive or therapeutic agents by direct active pocket targeting of mTOR kinase, resulting in sensitizing cancer cells harboring enhanced phosphorylation of the mTORC2-Akt-p70S6k signaling pathway.
Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Quimioprevenção , Medicamentos de Ervas Chinesas/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismoRESUMO
Neuroblastoma (NB) is one of the most common solid tumors in children. High-risk NB remains lethal in about 50% of patients despite comprehensive and intensive treatments. Activation of PI3K/Akt/mTOR signaling pathway correlates with oncogenesis, poor prognosis and chemotherapy resistance in NB. Due to its central role in growth and metabolism, mTOR seems to be an important factor in NB, making it a possible target for NB. In this study, we investigated the effect of AZD8055, a potent dual mTORC1-mTORC2 inhibitor, in NB cell lines. Our data showed that mTOR signaling was extensively activated in NB cells. The activity of mTOR and downstream molecules were down-regulated in AZD8055-treated NB cells. Significantly, AZD8055 effectively inhibited cell growth and induced cell cycle arrest, autophagy and apoptosis in NB cells. Moreover, AZD8055 significantly reduced tumor growth in mice xenograft model without apparent toxicity. Taken together, our results highlight the potential of mTOR as a promising target for NB treatment. Therefore, AZD8055 may be further investigated for treatment in clinical trials for high risk NB.
Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Morfolinas/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Nus , Morfolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
1. The absorption, distribution, metabolism, and excretion of CC-223 were studied following a single oral dose of [14C]CC-223 to rats (3 mg/kg; 90 µCi/kg), dogs (1.5 mg/kg; 10 µCi/kg), and healthy volunteers (20 mg; 200 nCi). 2. CC-223-derived radioactivity was widely distributed in rats. Excretion of radioactivity was rapid and nearly complete from rats (87%), dogs (78%), and humans (97%). Feces was the major excretion pathway for rats (67%) and dogs (70%), whereas urine (57.6%) was the major elimination route for humans. Urine and bile each contained approximately 20% administered radioactivity in rats, whereas bile (20%) played a more important role than urine (<10%) in the excretion of absorbed radioactivity in dogs. Based on excretion data, CC-223 had good absorption, with greater than 56%, 29%, and 57% of the oral dose absorbed in rats, dogs, and humans, respectively. 3. CC-223 was the prominent radioactive component in circulation of rats (>71% of the exposure to total radioactivity) and dogs (≥45.5%), whereas M1 (76.5%) was the predominant circulating metabolite in humans. M1 and M1-derived metabolites accounted for >66% of human dose. CC-223 was extensively metabolized in rats, dogs, and humans through glucuronidation, O-demethylation, oxidation, and combinations of these pathways.
Assuntos
Pirazinas/metabolismo , Administração Oral , Animais , Líquidos Corporais/metabolismo , Cães , Humanos , Ratos , Serina-Treonina Quinases TOR/metabolismoRESUMO
1. CC-223 was studied in vitro for metabolism and drug-drug interactions (DDI), and in clinic for interaction with ketoconazole. 2. In vitro, human metabolites of CC-223 included O-desmethyl CC-223 (M1), keto (M2), N-oxide (M3) and imine (M13), with M1 being the most prominent metabolite. 3. CC-223 was metabolized by CYP2C9 and CYP3A, while metabolism of M1 was mediated by CYP2C8 and CYP3A. Ketoconazole increased CC-223 and M1 exposure by 60-70% in healthy volunteers. 4. CC-223 (IC50 ≥ 27 µM) and M1 (IC50 ≥ 46 µM) were inhibitors of CYP2C9 and CYP2C19 in human liver microsomes. CC-223 and M1 were moderate inducers of CYP3A in human hepatocytes. 5. CC-223 was a substrate of BCRP, and M1 was a substrate of P-gp and BCRP. CC-223 was an inhibitor of P-gp (IC50 = 3.67 µM) and BCRP (IC50 = 11.7 µM), but at a clinically relevant concentration showed no inhibition of other transporters examined. M1 is a weak inhibitor of P-gp and BCRP. 6. PBPK model of CC-223 and M1 was developed and verified using clinical results. Model based predictions of DDI with ketoconazole were in agreement with observed results enabling prospective predictions of DDIs between CC-223 and CYP3A4 inhibitors.
Assuntos
Interações Medicamentosas , Pirazinas/farmacocinética , Sirolimo/metabolismo , Animais , Inibidores do Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Cetoconazol , Proteínas de Membrana Transportadoras/metabolismo , Microssomos Hepáticos/metabolismo , Estudos Prospectivos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Mammalian target of rapamycin (mTOR) complex (mTORC) is frequently activated in diverse cancers. Although dual mTORC1/2 inhibitors are currently under development to treat various malignancies, the emergence of drug resistance has proven to be a major complication. AZD8055 is a novel, potent ATP-competitive and specific inhibitor of mTOR kinase activity, which blocks both mTORC1 and mTORC2 activation. In this study, we acquired AZD8055-resistant neuroblastoma (NB) cell sublines by using prolonged stepwise escalation of AZD8055 exposure (4-12 weeks). Here we demonstrate that the AZD8055-resistant sublines (TGW-R and SMS-KAN-R) exhibited marked resistance to AZD8055 compared to the parent cells (TGW and SMS-KAN). The cell cycle G1/S transition was advanced in resistant cells. In addition, the resistance against AZD8055 correlated with over-activation of MEK/ERK signaling pathway. Furthermore, combination of AZD8055 and MEK inhibitor U0126 enhanced the growth inhibition of resistant cells significantly in vitro and in vivo. In conclusion, these data show that targeting mTOR kinase and MEK/ERK signaling simultaneously might help to overcome AZD8055 resistance in NB.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morfolinas/farmacologia , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Animais , Antineoplásicos/farmacologia , Butadienos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Feminino , Fase G1/efeitos dos fármacos , Humanos , Camundongos Nus , Nitrilas/farmacologia , Fase S/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismoRESUMO
Mammalian target of rapamycin (mTOR) kinase is vital to the regulation of cell growth and proliferation, and it has been taken as a promising target to develop cancer therapies. By reference to the crystal structure of mTOR-PP242, we explored to discover potential ATP-competitive inhibitors of mTOR. Through the integrated use of multiple in silico screenings, the tremendous amount of compounds from the SPECS database were finally reduced to 30. After several rounds of convincing biological tests in A549 cells, the newfound C-4 was identified as a potential ATP-competitive inhibitor of mTOR. Besides A549 cell proliferation suppression caused by C-4, autophagy was also determined through autophagosome observation and autophagy flux detection in C-4 treated A549 cells. We demonstrated that C-4 could inhibit cell growth and proliferation, and this inhibition may be associated with autophagy.
Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células A549 , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismoRESUMO
Mammalian target of rapamycin (mTOR) is a PI3K-related serine/threonine protein kinase that functions as a master regulator of cellular growth and metabolism, in response to nutrient and hormonal stimuli. mTOR functions in two distinct complexes-mTORC1 is sensitive to rapamycin, while, mTORC2 is insensitive to this drug. Deregulation of mTOR's enzymatic activity has roles in cancer, obesity, and aging. Rapamycin and its chemical derivatives are the only drugs that inhibit the hyperactivity of mTOR, but numerous side effects have been described due to its therapeutic use. The purpose of this study was to identify new compounds of natural origin that can lead to drugs with fewer side effects. We have used computational techniques (molecular docking and calculated ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) parameters) that have enabled the selection of candidate compounds, derived from marine natural products, SuperNatural II, and ZINC natural products, for inhibitors targeting, both, the ATP and the rapamycin binding sites of mTOR. We have shown experimental evidence of the inhibitory activity of eleven selected compounds against mTOR. We have also discovered the inhibitory activity of a new marine extract against this enzyme. The results have been discussed concerning the necessity to identify new molecules for therapeutic use, especially against aging, and with fewer side effects.
Assuntos
Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologiaRESUMO
Transition dairy cows experience a nutrient deficit, particularly in the immediate postpartum period. At the same time, the inflammatory balance is altered and cows exhibit an immune response primed for inflammatory response rather than tolerance. The mechanistic link that might be underlying the immunological effects due to the lack in nutrients is not fully understood. Studies in other species demonstrate an orchestrating role of nutrient-sensing kinases in the determination of immune phenotypes and immune cell proliferation and differentiation. Our primary objective was to investigate changes in energy storage and signaling through the protein kinase B (AKT)/mechanistic target of rapamycin complex 1 (mTOR) pathway in bovine immune cells in the transition period, as well as the association with cytokine expression profiles. A secondary objective was to test if supplementation with branched-chain amino acids alone or in combination with oral propylene glycol had any effect on the measured parameters. To assess cellular energy storage, glycogen concentration was measured by an enzymatic-fluorometric method in peripheral blood mononuclear cells (PBMC) of multiparous Holstein cows (n = 72) at 3 time points in the transition period (21 d before, 7 and 28 d after calving). At the same time points, phosphorylation of proteins in the AKT/mTOR pathway was assessed by immunoblotting in PBMC from 60 animals. Whole-blood leukocyte cytokine gene expression of IL12B, IL6, IL1B, TNF, and IL10 was measured in samples from 50 animals by reverse-transcription quantitative PCR with and without stimulation of samples with 10 ng/mL of lipopolysaccharide. Compared with glycogen concentration of prepartum PBMC, glycogen concentration decreased by 37% on d 7 postpartum. The activation of AKT/mTOR in bovine PBMC postpartum was reduced compared with prepartum values. Results of reverse-transcription quantitative PCR showed an increase in cytokine gene expression postpartum compared with prepartum values. Supplementation with branched-chain amino acids alone or in combination with oral propylene glycol did not alter glycogen storage, AKT/mTOR activity, or inflammatory balance as assessed by the measured parameters in this study. We conclude that the nutrient deficit of the immediate postpartum period is sensed by bovine immune cells, and that it affects their energy storage as well as cellular signaling pathways postpartum. Temporal associations with changes in cytokine gene expression are intriguing and warrant further investigation of the role of this pathway as a possible link between metabolism and immune phenotype postpartum.
Assuntos
Doenças dos Bovinos/metabolismo , Bovinos/imunologia , Inflamação/metabolismo , Fosfotransferases/metabolismo , Animais , Dieta , Metabolismo Energético , Feminino , Lactação , Leucócitos Mononucleares , Leite , Período Pós-Parto , Transdução de SinaisRESUMO
Titin, a giant sarcomeric protein, is largely responsible for the diastolic properties of the heart. It has two major isoforms, N2B and N2BA due to pre-mRNA splicing regulated mainly by a splicing factor RNA binding motif 20 (RBM20). Mis-splicing of titin pre-mRNA in response to external stimuli may lead to altered ratio of N2B to N2BA, and thus, impaired cardiac contractile function. However, little is known about titin alternative splicing in response to external stimuli. Here, we reported the detailed mechanisms of titin alternative splicing in response to insulin. Insulin treatment in cultured neonatal rat cardiomyocytes (NRCMs) activated the PI3K-Akt-mTOR kinase axis, leading to increased N2B expression in the presence of RBM20, but not in NRCMs in the absence of RBM20. By inhibiting this kinase axis with inhibitors, decreased N2B isoform was observed in NRCMs and also in diabetic rat model treated with streptozotocin, but not in NRCMs and diabetic rats in the absence of RBM20. In addition to the alteration of titin isoform ratios in response to insulin, we found that RBM20 expression was increased in NRCMs with insulin treatment, suggesting that RBM20 levels were also regulated by insulin-induced kinase axis. Further, knockdown of p70S6K1 with siRNA reduced both RBM20 and N2B levels, while knockdown of 4E-BP1 elevated expression levels of RBM20 and N2B. These findings reveal a major signal transduction pathway for insulin-induced titin alternative splicing, and place RBM20 in a central position in the pathway, which is consistent with the reputed role of RBM20 in titin alternative splicing. Findings from this study shed light on gene therapeutic strategies at the molecular level by correction of pre-mRNA mis-splicing.
Assuntos
Processamento Alternativo , Conectina/biossíntese , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Precursores de RNA/biossíntese , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Conectina/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Precursores de RNA/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Mutantes , Serina-Treonina Quinases TOR/genéticaRESUMO
OBJECTIVE: The regulatory role of the Th9 cells along with its signature cytokine IL-9 in human immune system and its aberrant activation in autoimmune diseases is currently under investigation. We are reporting the functional significance of IL-9 in the pathogenesis of autoimmune inflammatory arthritis. METHODS: CD3(+) T cells were obtained from peripheral blood (PB) and synovial fluid (SF) of psoriatic arthritis (PsA), rheumatoid arthritis (RA), and osteoarthritis (OA) patients. MTT, FACS based CFSE dilution assay and apoptosis assay (Annexin-V) were performed to determine the pro-growth/survival effect of human recombinant IL-9 on activated CD3(+) T cells. Immunoblots were performed to determine the signaling proteins responsible for the progrowth/survival effect of IL-9. RESULTS: SF of PsA and RA was enriched with IL-9 producing CD3(+) T cells compared to the SF in OA. IL-9 level measured by ELISA was significantly elevated in PsA and RA patients compared to SF in OA (<.001). Activated T cells of PsA and RA had higher levels of IL-9 receptors. IL-9 promoted proliferation and survival of the CD3(+) T cells of PB and SF of PsA and RA and compared to untreated (media) controls (p<.005, t-test). IL-9 induced proliferation of T cells was dependent on PI3K/Akt/mTOR signaling pathway. CONCLUSION: IL-9 is functionally active, and is a pro-growth/survival factor for the localized pathologic T cells in the synovium of inflammatory arthritis. The pro-growth/survival effect is mediated by the activation of mTOR kinase cascade. To our knowledge, this is the first report of a functional role of IL-9 in human autoimmune arthritis.
Assuntos
Artrite Psoriásica/imunologia , Artrite Reumatoide/imunologia , Interleucina-9/imunologia , Ativação Linfocitária/imunologia , Osteoartrite/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Apoptose/imunologia , Artrite Psoriásica/patologia , Artrite Reumatoide/patologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Complexo CD3/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Interleucina-9/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Osteoartrite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/farmacologia , Líquido Sinovial/citologia , Líquido Sinovial/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
BACKGROUND: The mTOR pathway, which consists of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), is activated in polycystic kidney disease (PKD) kidneys. Sirolimus and everolimus indirectly bind and inhibit mTORC1. A novel group of drugs, the mTOR kinase inhibitors, directly bind to mTOR kinase, thus inhibiting both mTORC1 and 2. The aim of the study was to determine the therapeutic effect of an mTOR kinase inhibitor, PP242, in the Han:SPRD rat (Cy/+) model of PKD. METHODS: Male rats were treated with PP242 5 mg/kg/day IP or vehicle for 5 weeks. RESULTS: PP242 significantly reduced the kidney enlargement, the cyst density and the blood urea nitrogen in Cy/+ rats. On immunoblot of kidneys, PP242 resulted in a decrease in pS6, a marker of mTORC1 signaling and pAkt(Ser473), a marker of mTORC2 signaling. mTORC plays an important role in regulating cytokine production. There was an increase in IL-1, IL-6, CXCL1 and TNF-α in Cy/+ rat kidneys that was unaffected by PP242. Apoptosis or proliferation is known to play a causal role in cyst growth. PP242 had no effect on caspase-3 activity, TUNEL positive or active caspase-3-positive tubular cells in Cy/+ kidneys. PP242 reduced the number of proliferating cells per cyst and per non-cystic tubule in Cy/+ rats. CONCLUSIONS: In a rat model of autosomal dominant polycystic kidney disease, PP242 treatment (i) decreases proliferation in cystic and non-cystic tubules; (ii) inhibits renal enlargement and cystogenesis and (iii) significantly reduces the loss of kidney function.
Assuntos
Indóis/farmacologia , Doenças Renais Policísticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Immunoblotting , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Doenças Renais Policísticas/enzimologia , Doenças Renais Policísticas/patologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismoRESUMO
mTOR inhibition led to activation of upstream receptor tyrosine kinases (RTKs) and AKT, which may attenuate the efficacy of mTOR kinase inhibitors. We sought to discover efficient drug combination with mTOR inhibitors by elucidating the survival feedback loops induced by mTOR inhibition in breast cancer. The feedback signaling upon treatment of mTOR inhibitor AZD8055 was determined and the combinatorial activity of AZD8055 and HSP90 inhibitor AUY922 in cell signaling and proliferation were detected. Treatment of breast cancer T47D cells with AZD8055 induced activation of AKT and phosphatidylinositol 3-kinase (PI3K), which was accompanied with increase in expression of multiple upstream proteins including EGFR, HER2, HER3 and IRS-1. Different RTKs were revealed to be responsible for the reactivation of AKT by AZD8055 in different breast cancer cell lines. Down-regulation of these proteins differentially enhanced the antiproliferative activity of AZD8055. AZD8055 and AUY922 displayed synergistic effect against a panel of human breast cancer cells irrespective their genotype, which was associated with enhanced cell cycle arrest and inhibition of DNA synthesis. AUY922 destabilized multiple tested tyrosine kinases and abrogated activation of AKT induced by AZD8055. AZD8055 also inhibited up-regulation of HSP70 and HSP27 upon AUY922 treatment. Cotreatment of these two drugs demonstrated synergistic activity against triple negative MDA-MB-468 xenograft without enhanced toxicity. The combination of AZD8055 and AUY922 demonstrated synergistic activity against various types of breast cancer and established a mechanistic rationale for a combination approach using catalytic mTOR kinase inhibitor and HSP90 inhibitor in the treatment of breast cancer.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Morfolinas/farmacologia , Resorcinóis/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sinergismo Farmacológico , Feminino , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais CultivadasRESUMO
The TOR (target of rapamycin) protein, a large phosphatidylinositol 3-kinase-like protein kinase (PIKK) that is conserved in eukaryotes and is a central regulator of growth and metabolism. The analysis of function of TOR in plant growth and development has been limited by the fact that plants are very poorly sensitive to rapamycin. As the kinase domain of TOR is highly conserved, this study analysed the dose-dependent effect of three sets of first- and second-generation ATP-competitive inhibitors (called asTORis for active-site TOR inhibitors) recently developed for the human TOR kinase on Arabidopsis thaliana growth. All six asTORis inhibited plant root growth in a dose-dependent manner, with 50% growth inhibitory doses (GI50) of <10 µM and <1 µM for the first- and second-generation inhibitors, respectively, similarly to the values in mammalian cells. A genetic approach further demonstrated that only asTORis inhibited root growth in an AtTOR gene-dosage-dependent manner. AsTORis decreased the length of: (i) the meristematic zone (MZ); (ii) the division zone in the MZ; (iii) epidermal cells in the elongation zone; and (iv) root hair cells. Whereas meristematic cells committed to early differentiation, the pattern of cell differentiation was not affected per se. AsTORis-induced root hair growth phenotype was shown to be specific by using other growth inhibitors blocking the cell cycle or translation. AsTORis dose-dependent inhibition of growth and root hairs was also observed in diverse groups of flowering plants, indicating that asTORis can be used to study the TOR pathway in other angiosperms, including crop plants.
Assuntos
Trifosfato de Adenosina/farmacologia , Arabidopsis/crescimento & desenvolvimento , Padronização Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Meristema/citologia , Desenvolvimento Vegetal/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Proliferação de Células/efeitos dos fármacos , Dosagem de Genes , Haploinsuficiência/efeitos dos fármacos , Humanos , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Morfolinas/farmacologia , Naftiridinas/farmacologia , Fenótipo , Compostos de Fenilureia/farmacologia , Pirazóis/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
A series of N-7-methyl-imidazolopyrimidine inhibitors of the mTOR kinase have been designed and prepared, based on the hypothesis that the N-7-methyl substituent on imidazolopyrimidine would impart selectivity for mTOR over the related PI3Kα and δ kinases. The corresponding N-Me substituted pyrrolo[3,2-d]pyrimidines and pyrazolo[4,3-d]pyrimidines also show potent mTOR inhibition with selectivity toward both PI3α and δ kinases. The most potent compound synthesized is pyrazolo[4,3-d]pyrimidine 21c. Compound 21c shows a Ki of 2 nM against mTOR inhibition, remarkable selectivity (>2900×) over PI3 kinases, and excellent potency in cell-based assays.
Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismoRESUMO
Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.