Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.213
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2303366121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437536

RESUMO

Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.


Assuntos
Microalgas , Alga Marinha , Ecossistema , Orçamentos , Carbono , Mudança Climática , Camada de Gelo , Fitoplâncton
2.
Proc Natl Acad Sci U S A ; 120(1): e2210561119, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584294

RESUMO

Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater. We adapted the techniques of anion exchange chromatography, enzyme-linked immunosorbent assay, and biocatalytic enzyme-based assay for detection and quantification of fucoidan. We found the brown alga Fucus vesiculosus at the Baltic Sea coast of south-west Finland to secrete 0.3% of their biomass as fucoidan per day. Dissolved fucoidan concentrations in seawater adjacent to algae reached up to 0.48 mg L-1. Fucoidan accumulated during incubations of F. vesiculosus, significantly more in light than in darkness. Maximum estimation by acid hydrolysis indicated fucoidan secretion at a rate of 28 to 40 mg C kg-1 h-1, accounting for 44 to 50% of all exuded dissolved organic carbon. Composed only of carbon, oxygen, hydrogen, and sulfur, fucoidan secretion does not consume nutrients enabling carbon sequestration independent of algal growth. Extrapolated over a year, the algae sequester more carbon into secreted fucoidan than their biomass. The global utility of fucoidan secretion is an alternative pathway for carbon dioxide removal by brown algae without the need to harvest or bury algal biomass.


Assuntos
Dióxido de Carbono , Phaeophyceae , Dióxido de Carbono/metabolismo , Polissacarídeos/metabolismo , Phaeophyceae/metabolismo , Oceanos e Mares
3.
Semin Cell Dev Biol ; 134: 69-78, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35459546

RESUMO

The marine green macroalga Ulva (Chlorophyta, Ulvales), also known as sea lettuce, coexists with a diverse microbiome. Many Ulva species proliferate in nature and form green algal blooms ("green tides"), which can occur when nutrient-rich wastewater from agricultural or densely populated areas is flushed into the sea. Bacteria are necessary for the adhesion of Ulva to its substrate, its growth, and the development of its blade morphology. In the absence of certain bacteria, Ulva mutabilis develops into a callus-like morphotype. However, with the addition of the necessary marine bacteria, the entire morphogenesis can be restored. Surprisingly, just two bacteria isolated from U. mutabilis are sufficient for inducing morphogenesis and establishing the reductionist system of a tripartite community. While one bacterial strain causes algal blade cell division, another causes the differentiation of basal cells into a rhizoid and supports cell wall formation because of a low concentration of the morphogen thallusin (below 10-10 mol/L). This review focuses on the research conducted on this topic since 2015, discusses how U. mutabilis has developed into a model organism in chemical ecology, and explores the questions that have already been addressed and the perspectives that a reductionist model system allows. In particular, the field of systems biology will achieve a comprehensive, quantitative understanding of the dynamic interactions between Ulva and its associated bacteria to better predict the behavior of the system as a whole. The reductionist approach has enabled the study of the bacteria-induced morphogenesis of Ulva. Specific questions regarding the optimization of cultivation conditions as well as the yield of raw materials for the food and animal feed industries can be answered in the laboratory and through applied science. Genome sequencing, the improvement of genetic engineering tools, and the first promising attempts to leverage macroalgae-microbe interactions in aquaculture make this model organism, which has a comparatively short parthenogenetic life cycle, attractive for both fundamental and applied research. The reviewed research paves the way for the synthetic biology of macroalgae-associated microbiomes in sustainable aquacultures.


Assuntos
Clorófitas , Alga Marinha , Ulva , Ulva/metabolismo , Ulva/microbiologia , Alga Marinha/microbiologia , Aquicultura , Morfogênese , Bactérias
4.
Plant J ; 119(2): 1091-1111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642374

RESUMO

Green feather algae (Bryopsidales) undergo a unique life cycle in which a single cell repeatedly executes nuclear division without cytokinesis, resulting in the development of a thallus (>100 mm) with characteristic morphology called coenocyte. Bryopsis is a representative coenocytic alga that has exceptionally high regeneration ability: extruded cytoplasm aggregates rapidly in seawater, leading to the formation of protoplasts. However, the genetic basis of the unique cell biology of Bryopsis remains poorly understood. Here, we present a high-quality assembly and annotation of the nuclear genome of Bryopsis sp. (90.7 Mbp, 27 contigs, N50 = 6.7 Mbp, 14 034 protein-coding genes). Comparative genomic analyses indicate that the genes encoding BPL-1/Bryohealin, the aggregation-promoting lectin, are heavily duplicated in Bryopsis, whereas homologous genes are absent in other ulvophyceans, suggesting the basis of regeneration capability of Bryopsis. Bryopsis sp. possesses >30 kinesins but only a single myosin, which differs from other green algae that have multiple types of myosin genes. Consistent with this biased motor toolkit, we observed that the bidirectional motility of chloroplasts in the cytoplasm was dependent on microtubules but not actin in Bryopsis sp. Most genes required for cytokinesis in plants are present in Bryopsis, including those in the SNARE or kinesin superfamily. Nevertheless, a kinesin crucial for cytokinesis initiation in plants (NACK/Kinesin-7II) is hardly expressed in the coenocytic part of the thallus, possibly underlying the lack of cytokinesis in this portion. The present genome sequence lays the foundation for experimental biology in coenocytic macroalgae.


Assuntos
Genoma de Planta , Genoma de Planta/genética , Filogenia , Clorófitas/genética , Clorófitas/fisiologia , Regeneração/genética , Bryopsida/genética , Bryopsida/fisiologia , Bryopsida/citologia , Cinesinas/genética , Cinesinas/metabolismo , Miosinas/genética , Miosinas/metabolismo
5.
New Phytol ; 241(6): 2353-2365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197185

RESUMO

The kinetic properties of Rubisco, the most important carbon-fixing enzyme, have been assessed in a small fraction of the estimated existing biodiversity of photosynthetic organisms. Until recently, one of the most significant gaps of knowledge in Rubisco kinetics was marine macrophytes, an ecologically relevant group including brown (Ochrophyta), red (Rhodophyta) and green (Chlorophyta) macroalgae and seagrasses (Streptophyta). These organisms express various Rubisco types and predominantly possess CO2 -concentrating mechanisms (CCMs), which facilitate the use of bicarbonate for photosynthesis. Since bicarbonate is the most abundant form of dissolved inorganic carbon in seawater, CCMs allow marine macrophytes to overcome the slow gas diffusion and low CO2 availability in this environment. The present review aims to compile and integrate recent findings on the biochemical diversity of Rubisco and CCMs in the main groups of marine macrophytes. The Rubisco kinetic data provided demonstrate a more relaxed relationship among catalytic parameters than previously reported, uncovering a variability in Rubisco catalysis that has been hidden by a bias in the literature towards terrestrial vascular plants. The compiled data indicate the existence of convergent evolution between Rubisco and biophysical CCMs across the polyphyletic groups of marine macrophytes and suggest a potential role for oxygen in shaping such relationship.


Assuntos
Dióxido de Carbono , Diatomáceas , Ribulose-Bifosfato Carboxilase/metabolismo , Bicarbonatos , Diatomáceas/metabolismo , Fotossíntese , Carbono
6.
Mol Ecol ; 33(5): e17267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230446

RESUMO

The range-expansion of tropical herbivores due to ocean warming can profoundly alter temperate reef communities by overgrazing the seaweed forests that underpin them. Such ecological interactions may be mediated by changes to seaweed-associated microbiota in response to warming, but empirical evidence demonstrating this is rare. We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp Ecklonia radiata's microbiota in sustained warming and MHW treatments was enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid Sargassum linearifolium's microbiota was unaffected by temperature. Consumption by the tropical sea-urchin Tripneustes gratilla was greater on Ecklonia where the microbiota had been altered by higher temperatures, while Sargassum's consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. Effects of warming and MHWs on seaweed holobionts (host plus its microbiota) are likely species-specific. The effect of increased temperature on Ecklonia's microbiota and subsequent increased consumption suggest that changes to kelp microbiota may underpin kelp-herbivore interactions, providing novel insights into potential mechanisms driving change in species' interactions in warming oceans.


Assuntos
Kelp , Microbiota , Alga Marinha , Kelp/fisiologia , Ecossistema , Mudança Climática , Oceanos e Mares
7.
Crit Rev Biotechnol ; 44(3): 462-476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36842998

RESUMO

Nature derived compounds represent a valuable source of bioactive molecules with enormous potential. The sea is one of the richest environments, full of skilled organisms, where algae stand out due to their unique characteristics. Marine macroalgae adapt their phenotypic characteristics, such as chemical composition, depending on the environmental conditions where they live. The compounds produced by these organisms show tremendous potential to be used in the biomedical field, due to their antioxidant, anti-inflammatory, immunomodulatory, and anti-cancer properties.Cancer is one of the deadliest diseases in the world, and the lack of effective treatments highlights the urgent need for the development of new therapeutic strategies. This review provides an overview of the current advances regarding the anti-cancer activity of the three major groups of marine macroalgae, i.e., red algae (Rhodophyta), brown algae (Phaeophyceae), and green algae (Chlorophyta) on pancreatic, lung, breast, cervical, colorectal, liver, and gastric cancers as well as leukemia and melanoma. In addition, future perspectives, and limitations regarding this field of work are also discussed.


Assuntos
Clorófitas , Phaeophyceae , Rodófitas , Alga Marinha , Rodófitas/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
8.
Chemphyschem ; : e202400173, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845571

RESUMO

Raman spectroscopy was used to study the complex interactions and morphogenesis of the green seaweed Ulva (Chlorophyta) and its associated bacteria under controlled conditions in a reductionist model system. Integrating multiple imaging techniques contributes to a more comprehensive understanding of these biological processes. Therefore, Raman spectroscopy was introduced as a non-invasive, label-free tool for examining chemical information of the tripartite community Ulva mutabilis-Roseovarius sp.-Maribacter sp. The study explored cell differentiation, cell wall protrusion, and bacterial-macroalgae interactions of intact algal thalli. Using Raman spectroscopy, the analysis of the CHx-stretching wavenumber region distinguished spatial regions in Ulva germination and cellular malformations under axenic conditions and upon inoculation with a specific bacterium in bipartite communities. The spectral information was used to guide in-depth analyses within the fingerprint region and to identify substance classes such as proteins, lipids, and polysaccharides, including evidence for ulvan found in cell wall protrusions.

9.
Crit Rev Food Sci Nutr ; : 1-23, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078214

RESUMO

The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.


Macroalgae contain diverse bioactives for food and pharmaceutical applications.Integration of macroalgae into functional foods increases its nutritional value.Surging macroalgae-based foods indicate strong commercial potential.Clinical validation is essential for macroalgae-based products' therapeutic effects.Rigorous quality control ensures safety and compliance in macroalgae applications.

10.
Ann Bot ; 133(1): 169-182, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37804485

RESUMO

BACKGROUND AND AIMS: Contrasting patterns of host and microbiome biogeography can provide insight into the drivers of microbial community assembly. Distance-decay relationships are a classic biogeographical pattern shaped by interactions between selective and non-selective processes. Joint biogeography of microbiomes and their hosts is of increasing interest owing to the potential for microbiome-facilitated adaptation. METHODS: In this study, we examine the coupled biogeography of the model macroalga Durvillaea and its microbiome using a combination of genotyping by sequencing (host) and 16S rRNA amplicon sequencing (microbiome). Alongside these approaches, we use environmental data to characterize the relationship between the microbiome, the host, and the environment. KEY RESULTS: We show that although the host and microbiome exhibit shared biogeographical structure, these arise from different processes, with host biogeography showing classic signs of geographical distance decay, but with the microbiome showing environmental distance decay. Examination of microbial subcommunities, defined by abundance, revealed that the abundance of microbes is linked to environmental selection. As microbes become less common, the dominant ecological processes shift away from selective processes and towards neutral processes. Contrary to expectations, we found that ecological drift does not promote structuring of the microbiome. CONCLUSIONS: Our results suggest that although host macroalgae exhibit a relatively 'typical' biogeographical pattern of declining similarity with increasing geographical distance, the microbiome is more variable and is shaped primarily by environmental conditions. Our findings suggest that the Baas Becking hypothesis of 'everything is everywhere, the environment selects' might be a useful hypothesis to understand the biogeography of macroalgal microbiomes. As environmental conditions change in response to anthropogenic influences, the processes structuring the microbiome of macroalgae might shift, whereas those governing the host biogeography are less likely to change. As a result, increasingly decoupled host-microbe biogeography might be observed in response to such human influences.


Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Geografia
11.
Ann Bot ; 133(1): 183-212, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109285

RESUMO

BACKGROUND: The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE: We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION: Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.


Assuntos
Algas Comestíveis , Kelp , Laminaria , Kelp/genética , Ecossistema , Açúcares , Mudança Climática
12.
Ann Bot ; 133(1): 117-130, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37962600

RESUMO

BACKGROUND AND AIMS: Large brown macroalgae serve as foundation organisms along temperate and polar coastlines, providing a range of ecosystem services. Saccorhiza polyschides is a warm-temperate kelp-like species found in the northeast Atlantic, which is suggested to have proliferated in recent decades across the southern UK, possibly in response to increasing temperatures, physical disturbance and reduced competition. However, little is known about S. polyschides with regard to ecological functioning and population dynamics across its geographical range. Here we examined the population demography of S. polyschides populations in southwest UK, located within the species' range centre, to address a regional knowledge gap and to provide a baseline against which to detect future changes. METHODS: Intertidal surveys were conducted during spring low tides at three sites along a gradient of wave exposure in Plymouth Sound (Western English Channel) over a period of 15 months. Density, cover, age, biomass and morphology of S. polyschides were quantified. Additionally, less frequent sampling of shallow subtidal reefs was conducted to compare intertidal and subtidal populations. KEY RESULTS: We recorded pronounced seasonality, with fairly consistent demographic patterns across sites and depths. By late summer, S. polyschides was a dominant habitat-former on both intertidal and subtidal reefs, with maximum standing stock exceeding 13 000 g wet weight m-2. CONCLUSIONS: Saccorhiza polyschides is a conspicuous and abundant member of rocky reef assemblages in the region, providing complex and abundant biogenic habitat for associated organisms and high rates of primary productivity. However, its short-lived pseudo-annual life strategy is in stark contrast to dominant long-lived perennial laminarian kelps. As such, any replacement or reconfiguration of habitat-forming macroalgae due to ocean warming will probably have implications for local biodiversity and community composition. More broadly, our study demonstrates the importance of high-resolution cross-habitat surveys to generate robust baselines of kelp population demography, against which the ecological impacts of climate change and other stressors can be reliably detected.


Assuntos
Kelp , Alga Marinha , Ecossistema , Kelp/fisiologia , Biodiversidade , Demografia
13.
Ann Bot ; 133(1): 17-28, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38142363

RESUMO

BACKGROUND AND AIMS: Kelp forests are increasingly considered blue carbon habitats for ocean-based biological carbon dioxide removal, but knowledge gaps remain in our understanding of their carbon cycle. Of particular interest is the remineralization of detritus, which can remain photosynthetically active. Here, we study a widespread, thermotolerant kelp (Ecklonia radiata) to explore detrital photosynthesis as a mechanism underlying temperature and light as two key drivers of remineralization. METHODS: We used meta-analysis to constrain the thermal optimum (Topt) of E. radiata. Temperature and light were subsequently controlled over a 119-day ex situ decomposition experiment. Flow-through experimental tanks were kept in darkness at 15 °C or under a subcompensating maximal irradiance of 8 µmol photons m-2 s-1 at 15, 20 or 25 °C. Photosynthesis of laterals (analogues to leaves) was estimated using closed-chamber oxygen evolution in darkness and under a saturating irradiance of 420 µmol photons m-2 s-1. KEY RESULTS: T opt of E. radiata is 18 °C across performance variables (photosynthesis, growth, abundance, size, mass and fertility), life stages (gametophyte and sporophyte) and populations. Our models predict that a temperature of >15 °C reduces the potential for E. radiata detritus to be photosynthetically viable, hence detrital Topt ≤ 15 °C. Detritus is viable under subcompensating irradiance, where it performs better than in darkness. Comparison of net and gross photosynthesis indicates that elevated temperature primarily decreases detrital photosynthesis, whereas darkness primarily increases detrital respiration compared with optimal experimental conditions, in which detrital photosynthesis can persist for ≥119 days. CONCLUSIONS: T opt of kelp detritus is ≥3 °C colder than that of the intact plant. Given that E. radiata is one of the most temperature-tolerant kelps, this suggests that photosynthesis is generally more thermosensitive in the detrital phase, which partly explains the enhancing effect of temperature on remineralization. In contrast to darkness, even subcompensating irradiance maintains detrital viability, elucidating the accelerating effect of depth and its concomitant light reduction on remineralization to some extent. Detrital photosynthesis is a meaningful mechanism underlying at least two drivers of remineralization, even below the photoenvironment inhabited by the attached alga.


Assuntos
Ecossistema , Fotossíntese , Temperatura , Escuridão , Florestas
14.
Anal Bioanal Chem ; 416(11): 2871-2882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581531

RESUMO

Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.


Assuntos
Alga Marinha , Alga Marinha/química , Regiões Antárticas , Peso Molecular , Ecossistema , Enxofre/metabolismo , Compostos de Enxofre/metabolismo , Verduras , Compostos de Sulfidrila/metabolismo
15.
Oecologia ; 205(2): 365-381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836933

RESUMO

Surface temperature of the oceans has increased globally over the past decades. In coastal areas influenced by eastern boundary upwelling systems (EBUS), winds push seawater offshore and deep, cold and nutrient-rich seawater rise towards the surface, partially buffering global warming. On the North coast of Portugal, the NW Iberian upwelling system allows extensive kelp forests to thrive in these "boreal-like" conditions, fostering highly diverse and productive communities. However, the warming of the upper layer of the ocean may weaken this upwelling, leading to higher sea surface temperature and lower nutrient input in the coastal areas. The effects of these changes on the structure and function of coastal ecosystems remain unexplored. The present study aimed to examine the combined effects of elevated temperature and nutrient depletion on semi-naturally structured assemblages. The eco-physiological responses investigated included growth, chlorophyll fluorescence and metabolic rates at the levels of individual species and whole assemblages. Our findings showed interactive effects of the combination of elevated temperature with nutrient depletion on the large canopy-forming species (i.e., kelp). As main contributor to community response, those effects drove the whole assemblage responses to significant losses in productivity levels. We also found an additive effect of elevated temperature and reduced nutrients on sub-canopy species (i.e., Chondrus crispus), while turfs were only affected by temperature. Our results suggest that under weakening upwelling scenarios, the ability of the macroalgal assemblages to maintain high productivity rates could be seriously affected and predict a shift in community composition with the loss of marine forests.


Assuntos
Ecossistema , Nutrientes , Temperatura , Portugal , Água do Mar , Clorofila , Kelp , Aquecimento Global
16.
J Chem Ecol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958678

RESUMO

Characteristics such as calcareous morphology and life cycle are used to understand the ecology of calcified rhodophytes. However, there is limited information regarding their chemical profiles and biological activities. Therefore, a systematic review (PRISMA) was conducted to assess the influence of the chemistry of calcareous rhodophytes on ecological interactions in the marine environment. The keywords used were: ["Chemical AND [Ecology OR Interaction OR Response OR Defense OR Effect OR Cue OR Mediated OR Induce]"] AND ["Red Seaweed" OR "Red Macroalgae" OR Rhodophy?] AND [Calcified OR Calcareous] in Science Direct, Scielo, PUBMED, Springer, Web of Science, and Scopus. Only English articles within the proposed theme were considered. Due to the low number of articles, another search was conducted with three classes and 16 genera. Finally, 67 articles were considered valid. Their titles, abstracts, and keywords were analyzed using IRaMuTeQ through factorial, hierarchical and similarity classification. Most of the studies used macroalgae thallus to evaluate chemical mediation while few tested crude extracts. Some substances were noted as sesquiterpene (6-hydroxy-isololiolide), fatty acid (heptadeca5,8,11-triene) and dibromomethane. The articles were divided into four classes: Herbivory, Competition, Settlement/Metamorphosis, and Epiphytism. Crustose calcareous algae were associated with studies of Settlement/Metamorphosis, while calcified algae were linked to herbivory. Thus, the importance of chemistry in the ecology of these algae is evident,and additional studies are needed to identify the substances responsible for ecological interactions. This study collected essential information on calcified red algae, whose diversity appears to be highly vulnerable to the harmful impacts of ongoing climate change.

17.
J Phycol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031293

RESUMO

Macroalgae influence local and global biogeochemical cycles through their production of dissolved organic carbon (DOC). Yet, data remain scarce and annualized estimates are typically based on high growth periods without considering seasonal variability. Although the mechanisms of active exudation and passive leakage need clarifying, ecophysiological stress is known to enhance DOC release. Therefore, DOC leakage from seasonally senescent macroalgae may be overlooked. This study focuses on the annual kelp Saccharina japonica var. religiosa (class Phaeophyceae) from Oshoro Bay, Hokkaido, Japan. Three years (2020-2022) of seasonal data were collected and analyzed, with least squares mean DOC release rates established for kelp (n = 88) across 16 incubation experiments (t ≥ 4 d, DOC samples ≥1 · d-1) under different photosynthetically active radiation (PAR) treatments (200, 400, 1200, or 1500 µmol photons · m-2 · s-1). Differences in PAR, dry weight biomass (g DW), sea surface temperature, or salinity could not explain DOC release-rate variability, which was high between individual kelp. Instead, there were significant intra-annual differences, with mean DOC release rates (mg C · g-1 DW · d-1 ± standard error between n kelp) higher during the autumn "late decay" period (0.71 ± 0.10, n = 27) compared to the winter "early growth" period (0.14 ± 0.025, n = 10) and summer "early decay" period (0.25 ± 0.050, n = 24). This relationship between seasonal senescence and macroalgal DOC release is further evidence that long-term, place-based studies of DOC dynamics are essential and that global extrapolations are premature.

18.
J Phycol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047050

RESUMO

Seaweeds play a strong ecological and economical role along the world's coastlines, where they support industries (e.g., aquaculture, bioproducts) and essential ecosystem services (e.g., biodiversity, fisheries, carbon capture). Evidence from wild and cultured seaweeds suggests that microorganisms play crucial roles in their health and functioning, prompting the need for considering seaweeds and their microbiome as a coherent entity or "holobiont." Here we show that the number of studies investigating seaweed hosts and their microbiome have increased in the last two decades. This likely reflects the increase in the appreciation of the importance of microbiomes for eukaryotic hosts, improved molecular approaches used to characterize their interactions, and increasing interest in commercial use of seaweeds. However, although increasing, most studies of seaweed holobionts have focused on (i) a few seaweed species of ecological or commercial significance, (ii) interactions involving only bacteria, and (iii) descriptive rather than experimental approaches. The relatively few experimental studies have mostly focused on manipulating abiotic factors to examine responses of seaweeds and their microbiome. Of the few studies that directly manipulated microorganisms to investigate their effects on seaweeds, most were done in laboratory or aquaria. We emphasize the need to move beyond the descriptions of patterns to experimental approaches for understanding causation and mechanisms. We argue that such experimental approaches are necessary for a better understanding of seaweed holobionts, for management actions for wild and cultivated seaweeds, and to better integrate studies of seaweed holobionts with the broader fields of seaweed ecology and biology, which are strongly experimental.

19.
J Phycol ; 60(1): 73-82, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102853

RESUMO

Culturing kelps for commercial, conservation, and scientific purposes is becoming increasingly widespread. However, kelp aquaculture methods are typically designed for ocean-based farms, and these methods may not be applicable for smaller scale cultivation efforts common in research and restoration. Growing kelps in closed, recirculating culture systems may address many of these constraints, yet closed system approaches have remained largely undescribed. Extensive declines of the bull kelp (Nereocystis luetkeana), an ecologically important canopy species in the Northeast Pacific, have received widespread attention and prompted numerous research and conservation initiatives. Here, we detail two approaches for cultivating N. luetkeana sporophytes in closed recirculating systems. Nereocystis luetkeana were reared as attached thalli in custom seaweed growth flumes and also free-floating in tumble culture tanks. Careful control of stocking density, water motion, aeration, and nutrient levels allowed for rapid growth and normal morphogenesis of laboratory-grown kelp. Culture systems reached up to 3 kg · m-3 , and individual thalli attained lengths of up to 6 m before the trials were terminated. Our results demonstrate the potential of recirculating, closed culture systems to overcome limitations associated with traditional culture methods. Recirculating systems enable the precise control of culture conditions, improving biosecurity and facilitating cultivar development and other research. Kelps can be grown away from the ocean or outside their native ranges, and seasonal or annual species can be produced year-round without seasonal constraints.


Assuntos
Kelp , Alga Marinha , Água , Aquicultura
20.
J Phycol ; 60(2): 409-417, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38159028

RESUMO

Brown algal male gametes show chemotaxis to the sex pheromone that is released from female gametes. The chemotactic behavior of the male gametes is controlled by the changes in the beating of two flagella known as the anterior and posterior flagellum. Our previous study using Mutimo cylindricus showed that the sex pheromone induced an increment in both the deflection angle of the anterior flagellum and sustained unilateral bend of the posterior flagellum, but the mechanisms regulating these two flagellar waveforms were not fully revealed. In this study, we analyzed the changes in swimming path and flagellar waveforms with a high-speed recording system under different calcium conditions. The extracellular Ca2+ concentration at 10-3 M caused an increment in the deflection angle of the anterior flagellum only when ionomycin was absent. No sustained unilateral bend of the posterior flagellum was induced either in the absence or presence of ionomycin in extracellular Ca2+ concentrations below 10-2 M. Real-time Ca2+ imaging revealed that there is a spot near the basal part of anterior flagellum showing higher Ca2+ than in the other parts of the cell. The intensity of the spot slightly decreased when male gametes were treated with the sex pheromone. These results suggest that Ca2+-dependent changes in the anterior and posterior flagellum are regulated by distinct mechanisms and that the increase in the anterior flagellar deflection angle and sustained unilateral bend of the posterior flagellum may not be primarily induced by the Ca2+ concentration.


Assuntos
Phaeophyceae , Atrativos Sexuais , Cálcio , Quimiotaxia/fisiologia , Ionomicina , Células Germinativas , Flagelos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa