Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Ecol Appl ; 34(6): e3016, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138827

RESUMO

Understanding the relationship between a dam's size and its ecological effects is important for prioritization of river restoration efforts based on dam removal. Although much is known about the effects of large storage dams, this information may not be applicable to small dams, which represent the vast majority of dams being considered for removal. To better understand how dam effects vary with size, we conducted a multidisciplinary study of the downstream effect of dams on a range of ecological characteristics including geomorphology, water chemistry, periphyton, riparian vegetation, benthic macroinvertebrates, and fish. We related dam size variables to the downstream-upstream fractional difference in measured ecological characteristics for 16 dams in the mid-Atlantic region ranging from 0.9 to 57 m high, with hydraulic residence times (HRTs) ranging from 30 min to 1.5 years. For a range of physical attributes, larger dams had larger effects. For example, the water surface width below dams was greater below large dams. By contrast, there was no effect of dam size on sediment grain size, though the fraction of fine-grained bed material was lower below dams independently of dam size. Larger dams tended to reduce water quality more, with decreased downstream dissolved oxygen and increased temperature. Larger dams decreased inorganic nutrients (N, P, Si), but increased particulate nutrients (N, P) in downstream reaches. Aquatic organisms tended to have greater dissimilarity in species composition below larger dams (for fish and periphyton), lower taxonomic diversity (for macroinvertebrates), and greater pollution tolerance (for periphyton and macroinvertebrates). Plants responded differently below large and small dams, with fewer invasive species below large dams, but more below small dams. Overall, these results demonstrate that larger dams have much greater impact on the ecosystem components we measured, and hence their removal has the greatest potential for restoring river ecosystems.


Assuntos
Ecossistema , Invertebrados , Rios , Animais , Invertebrados/fisiologia , Peixes/fisiologia , Conservação dos Recursos Naturais , Movimentos da Água , Monitoramento Ambiental
2.
Environ Sci Technol ; 58(10): 4510-4521, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38426442

RESUMO

Polystyrene (PS) is one of the main synthetic polymers produced around the world, and it is present in the composition of a wide variety of single-use objects. When released into the environment, these materials are degraded by environmental factors, resulting in microplastics. We investigated the ability of Chironomus sancticaroli (Diptera, Chironomidae) to promote the fragmentation of PS microspheres (24.5 ± 2.9 µm) and the toxic effects associated with exposure to this polymer. C. sancticaroli larvae were exposed to 3 different concentrations of PS (67.5, 135, and 270 particles g-1 of dry sediment) for 144 h. Significant lethality was observed only at the highest concentration. A significant reduction in PS particle size as well as evidence of deterioration on the surface of the spheres, such as grooves and cracks, was observed. In addition, changes in oxidative stress biomarkers (SOD, CAT, MDA, and GST) were also observed. This is the first study to report the ability of Chironomus sp. to promote the biofragmentation of microplastics. The information obtained demonstrates that the macroinvertebrate community can play a key role in the degradation of plastic particles present in the sediment of freshwater environments and can also be threatened by such particle pollution.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Larva , Poliestirenos/toxicidade , Chironomidae/metabolismo , Plásticos/toxicidade , Poluentes Químicos da Água/análise
3.
Environ Res ; 246: 118133, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191047

RESUMO

Climate warming and atmospheric deposition are altering alpine lake ecosystems at unprecedented rates, whereas their direct and indirect effects on primary consumer communities are unclear. This study presents sedimentary multi-proxy records including chironomids, diatoms, elements and stable isotopes of carbon and nitrogen in 210Pb-dated cores from two alpine lakes located above the timberline in the Taibai Mountain, eastern China. Before ∼2000 CE, chironomid communities were co-dominated by Heterotrissocladius marcidus-type and Micropsectra atrofasciata-type in the two lakes. Thereafter, Tanytarsus glabrescens-type increased rapidly to be a dominant species. Redundancy analyses (RDAs) revealed that chironomid fauna shifts were significantly correlated with rising diatom concentrations in both lakes, declining Ti content in the upstream lake and δ13C depletion in the downstream lake. Although temperature, precipitation and δ15N were not significant explanatory variables in RDAs, climate warming and atmospheric deposition likely promoted terrestrial and aquatic primary production, indicated by synchronous increases in organic matter contents and diatom concentrations in the two sediment cores. Since diatoms contain essential polyunsaturated fatty acids that are essential for chironomids, rising diatom concentrations can promote food quantity and quality. In addition, increased primary production would create organic substrates for chironomid larvae. Recent shifts in chironomid fauna driven by indirect effects of global warming and atmospheric deposition might be a widespread phenomenon in alpine lakes, probably triggering regime shifts in headwater lake ecosystems.


Assuntos
Chironomidae , Diatomáceas , Animais , Lagos/química , Ecossistema , China , Aquecimento Global
4.
Environ Res ; 255: 119157, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762002

RESUMO

Land use types have a significant impact on river ecosystems. The Yiluo River is the largest tributary below Xiaolangdi Reservoir in the middle reaches of the Yellow River, and is one of the important water conservation areas in the Yellow River Basin. Studying the ecological status of the Yiluo River under varied land use types in this basin is crucial for both ecological protection and the high-quality development of the Yellow River Basin. This study investigated the impacts of land use types on the macroinvertebrate community and functional structure in the Yiluo River Basin and introduced the concept of the land use health index (LUI). During the survey period, a total of 11,894 macroinvertebrates were collected, and 143 species were identified, belonging to 4 phyla, 7 orders, 22 families, and 75 families. The results showed that LUI had the most significant impact on macroinvertebrate community structure, with substrate type, dry plant weight, total phosphorus, turbidity, and attached algae biomass also playing significant roles in affecting macroinvertebrate communities. The species richness, the Shannon-Wiener index, and the Margalef richness index exhibited a nonlinear positive correlation with LUI of the sampling site, increasing as LUI enhancing and eventually reaching a plateau. Functional richness showed a linear and positive correlation with LUI, increasing with its enhancement, while functional evenness and functional divergence exhibited a nonlinear correlation with LUI. Functional evenness initially increased and then decreased with the enhancement of LUI, while functional divergence decreased with LUI enhancement. This study can provide a scientific reference for river ecological management under various land use scenarios.The Yiluo River is the largest tributary below Xiaolangdi Reservoir in the middle reaches of the Yellow River, and is one of the important water conservation areas in the Yellow River Basin. Studying the ecological status of the Yiluo River under varied land use types in this basin is crucial for both ecological protection and the high-quality development of the Yellow River Basin. This study investigated the impacts of land use types on the macroinvertebrate community and functional structure in the Yiluo River Basin and introduced the concept of the land use health index (LUI). During the survey period, a total of 11,894 macroinvertebrates were collected, and 143 species were identified, belonging to 4 phyla, 7 orders, 22 families, and 75 families. The results showed that LUI had the most significant impact on macroinvertebrate community structure, with substrate type, dry plant weight, total phosphorus, turbidity, and attached algae biomass also playing significant roles in affecting macroinvertebrate communities. The species richness, the Shannon-Wiener index, and the Margalef richness index exhibited a nonlinear positive correlation with LUI of the sampling site, increasing as LUI enhancing and eventually reaching a plateau. Functional richness showed a linear and positive correlation with LUI, increasing with its enhancement, while functional evenness and functional divergence exhibited a nonlinear correlation with LUI. Functional evenness initially increased and then decreased with the enhancement of LUI, while functional divergence decreased with LUI enhancement. This study can provide a scientific reference for river ecological management under various land use scenarios.


Assuntos
Biodiversidade , Invertebrados , Rios , Invertebrados/classificação , Rios/química , Animais , China , Monitoramento Ambiental , Agricultura
5.
Environ Res ; 250: 118475, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373546

RESUMO

Flooding is an important process in natural fluvial floodplains. How the flood shapes aquatic community diversity in highland floodplains is still poorly understood. The aim of this study was to unravel the multi-faceted responses of benthic macroinvertebrate diversity to flooding and habitat environments in the Baihe River Basin from a taxonomic, phylogenetic, and functional perspective. We examined the alpha and beta diversity patterns of benthic macroinvertebrate communities in the mainstream, tributaries, and oxbow lakes during the normal water and flood periods. The results showed that the traditional alpha taxonomic diversity (TD) varied across habitats, despite minor changes after flood pulse. Alpha phylogenetic diversity (PD) decreased and alpha functional diversity (FD) markedly increased after flooding, with functional traits transiting toward risk avoidance. While all the three facets of beta diversity significantly responded to habitat differences, beta TD and PD shifted in response to flooding. Species turnover prominently increased in beta TD and PD after flood pulse, which contrasted with a weaker response of this process in FD. The explanatory power of significant environmental factors on both alpha and beta diversity was reduced by flooding. Compared with traditional TD, cooperating multi-faceted diversity could better depict the responses of benthic macroinvertebrate communities to flooding. The assessment and conservation of aquatic biodiversity in highland floodplains should take into account the three facets of alpha and beta diversity.


Assuntos
Biodiversidade , Inundações , Invertebrados , Animais , Invertebrados/fisiologia , China , Rios , Filogenia , Ecossistema
6.
J Environ Manage ; 358: 120919, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663079

RESUMO

Habitat models rarely consider macroinvertebrate communities as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the whole community. This research aimed at providing an approach to model the habitat of the macroinvertebrate communities. The study was carried out in three rivers, located in Italy and characterized by a braiding morphology, gravel riverbeds, and low flows during the summer period. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the mesohabitat scale. Using different datasets gathered from field data collection and 2D hydrodynamic simulations, the model was calibrated in the Trebbia River (2019 field campaign) and validated in the Trebbia, Taro, and Enza rivers (2020 field campaign). The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R2 coefficient (R2cv) of the training dataset was 0.71, whereas the R2 coefficient (R2test) for the validation dataset was 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and river morphological modifications. Lastly, the proposed approach allowed to extend the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to ecological flows design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.


Assuntos
Ecossistema , Invertebrados , Rios , Animais , Modelos Teóricos , Itália
7.
Environ Monit Assess ; 196(5): 489, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689125

RESUMO

River Chanchaga has experienced significant agricultural practices around its catchment, which involved the indiscriminate use of pesticides. However, residents of the study area are not well aware of the negative impact of pesticides on water quality and macroinvertebrates. In this study, the first report on the influence of organophosphate pesticide contamination on the abundance of the macroinvertebrate community was provided. Sampling for the determination of organophosphate pesticide residues was carried out during the peak of the two seasons, while macroinvertebrates and physicochemical variables were observed for 6 months. We examined 11 organophosphate pesticide residues using gas chromatography coupled with mass spectrometry, 12 water quality variables, and 625 macroinvertebrate individuals. The concentration of recorded organophosphate pesticide residues ranged from 0.01 to 0.52 µg/L. From the Canonical Correspondence Analysis plot, malathion, chlorine, and paraffin show a positive correlation with Unima sp., Hydrocanthus sp., Chironomus sp., and Potadoma sp. At station 3, depth shows a positive correlation with Biomphalaria sp. and Zyxomma sp., indicating poor water quality as most of these macroinvertebrates are indicators of water pollution. Diuron and carbofuran show a negative correlation with Lestes sp. and Pseudocloeon sp., and these are pollution-sensitive macroinvertebrates. The total mean concentration of organophosphate pesticide residues was above international drinking water standards set by the World Health Organization except for paraffin, chlorpyrifos, and diuron. In conclusion, the observations recorded from this research are useful in managing pesticide applications around the river catchment.


Assuntos
Monitoramento Ambiental , Invertebrados , Resíduos de Praguicidas , Rios , Poluentes Químicos da Água , Qualidade da Água , Animais , Poluentes Químicos da Água/análise , Rios/química , Resíduos de Praguicidas/análise , Invertebrados/efeitos dos fármacos , Fazendas , Agricultura , Organofosfatos/análise
8.
Environ Res ; 220: 115255, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634889

RESUMO

Revealing how aquatic organisms respond to dam impacts is essential for river biomonitoring and management. Traditional examinations of dam impacts on macroinvertebrate assemblages were frequently conducted within single rivers (i.e., between upstream vs. downstream locations) and based on taxonomic identities but have rarely been expanded to level of entire basins (i.e., between dammed vs. undammed rivers) and from a functional trait perspective. Here, we evaluated the effects of dams on macroinvertebrate assemblages at both the within-river and basin scales using functional traits in two comparable tropical tributaries of the Lancang-Mekong River. At different scales, maximum body size, functional feeding groups (FFG), voltinism and occurrence in drift respond significantly to dam impact. Armoring categories varied significantly between downstream sites and upstream sites, and oviposition behavior, habits and adult life span significantly differed between rivers. The key traits at the within-river scale resembled to those at the between-river scale, suggesting that within-river trait variation could further shape functional trait structure at the basin scale in dammed rivers. Furthermore, water nutrients and habitat quality induced by dams showed the most important role in shaping trait structure, although trait-environment relationships varied between the two different scales. In addition, the trait-environment relationships were stronger in the dry season than in the wet season, suggesting a more important role of environmental filtering processes in the dry season compared with the wet season. This study highlights the utility of the trait-based approach to diagnose the effects of damming and emphasizes the importance of spatial scale to examine dam impacts in riverine systems.


Assuntos
Monitoramento Ambiental , Invertebrados , Animais , Invertebrados/fisiologia , Ecossistema , Rios/química , Monitoramento Biológico
9.
Environ Res ; 234: 116499, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429394

RESUMO

The decrease in freshwater biodiversity owing to anthropogenic disturbances such as mining activity is a global challenge; hence, there is an urgent need for systematic approaches to continuously monitor such disturbances and/or the recovery of biodiversity in freshwater habitats. The Hwangjicheon Stream is the source of South Korea's longest river and has been subjected to runoff from coal mining. We investigated changes in the diversity of the benthic macroinvertebrate community in various microhabitats, including riffle, run, and pool, to monitor the recovery of biodiversity in the stream following the improvement of a mining water treatment plant in 2019. The dataset comprised 111 samples obtained from four types of microhabitats (riffle, run, pool, and riparian) over a four-year period from 2018 to 2021. The mining-affected sites had lower macroinvertebrate community complexities according to a network analysis, and grouped into the same cluster based on self-organizing map (SOM) analysis. Moreover, 51 taxa selected as indicator species represented each cluster obtained through the SOM analysis. Among them, only Limnodrilus gotoi and Radix auricularia were included as indicator species at the mining-affected sites. However, after 2020, the benthic macroinvertebrate community complexity increased, and some of the microhabitats at the mining-affected sites were included in the same cluster as the reference sites in the SOM analysis, indicating that the recovery of benthic macroinvertebrate communities had initiated in certain microhabitats (e.g., riparian). Further analysis confirmed that the macroinvertebrate community clearly differed according to the survey year, even in different microhabitats at the same sites. This suggests that more acute microhabitat monitoring may be necessary to quickly confirm biodiversity restoration when assessing the degree of the recovery in river biodiversity from anthropogenic disturbances.


Assuntos
Invertebrados , Rios , Animais , Monitoramento Ambiental , Ecossistema , Biodiversidade
10.
Ecotoxicology ; 32(3): 300-308, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36905483

RESUMO

Microplastic (MP) is yet another form of chronic anthropogenic contribution to the environment. MPs are plastic particles (<5 mm) that have been widely found in the most diverse natural environments, but their real impacts on ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the third instar larvae of Chironomus sancticaroli, a dipteran species. The concentrations tested were 13.5; 67.5; and 135 items g-1 of dry sediment. C. sancticaroli organisms were investigated for fragment ingestion, mortality and changes in enzymatic biomarkers after 144 h of exposure. The organisms were able to ingest MPs from the first 48 h, and the amount of items internalized was dose-dependent and time-dependent. Overall, the results show that mortality was low, being significant at the lowest and highest concentrations (13.5 and 135 items g-1). Regarding changes in biochemical markers, after 144 h MDA and CAT activities were both significantly altered (increased and reduced, respectively), while SOD and GST levels were unchanged. In the present study, naturally aged polypropylene MPs induced biochemical toxicity in C. sancticaroli larvae, with toxicity being higher according to exposure time and particle concentration.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Polipropilenos/toxicidade , Chironomidae/fisiologia , Ecossistema , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Larva
11.
J Environ Manage ; 329: 117111, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566728

RESUMO

Understanding biotic assemblage variations resulting from water diversions and other pressures is critical for aquatic ecosystem conservation, but hampered by limited research. Mechanisms driving macroinvertebrate assemblages were determined across five lakes along China's South-to-North Water Diversion Project, an over 900-km water transfer system connecting four river basins. We assessed macroinvertebrate patterns from 59 sites in relation to water quality, climatic, spatial, and hydrologic factors. Macroinvertebrate density, biomass, and species richness increased from upriver to downriver lakes, and were higher during the water transfer period than in the non-water transfer period. Non-native species including Nephtys sp., Paranthura japonica, Potamillacf acuminata, Capitekkidae spp. and Novaculina chinensis, were distributed along the entire study system, some become dominant in upriver lakes. High species turnover occurred in two upriver lakes. Hydrology and water quality are critical factors in shaping these macroinvertebrate patterns. Hydrological disturbance by water transfer boosted macroinvertebrate abundance during the water transfer period while facilitated non-native species dispersals and increased biotic homogenization. This study indicates the need for: 1) an effective ecosystem monitoring system; 2) unified system management standards; 3) external pollution controls; and 4) limiting the dispersal of non-native species.


Assuntos
Ecossistema , Qualidade da Água , Animais , Invertebrados , Espécies Introduzidas , Monitoramento Ambiental , Hidrologia , Rios
12.
Environ Monit Assess ; 196(1): 45, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102459

RESUMO

Research on the Awash River focused on the upper section, while the middle and lower regions received little attention. Thus, the goal of this study was to evaluate the impact of anthropogenic activities on the upper and middle Awash River. The study took place in nine sampling locations in dry and wet seasons from September 2021 to April 2022 using a multi-habitat sampling approach. We used macroinvertebrate metrics, environmental variables, and multivariate analysis to evaluate ecological health. The highest concentrations of NO3, soluble reactive phosphorus, and total phosphorus (0.50-0.93 mg L-1) were recorded at the river-mouth of the upper Awash, while the locations below Metehara had the lowest levels of dissolved oxygen (1.81-2.33 mg L-1). Redundancy analysis indicated that dissolved oxygen, NH3, temperature, NO2, pH, TSS, NO3, and TDS influenced macroinvertebrate distribution. The presence of the sensitive groups Caenidae, Hydropsychidae, Heptageniidae, and Aeshnidae at upstream sites indicated better ecological conditions. The middle and downstream sites supported moderately tolerant and tolerant taxa demonstrating water quality impairment. The lowest Ethiopian biotic score was recorded at the river-mouth of the upper Awash. The study sites below Metehara demonstrated severe ecological impairment since highly tolerant taxa were abundant and had strong correlations with temperature, TSS, and TDS levels. Pollutants from agricultural farms and domestic and industrial wastes from Addis Ababa, Metehara, and Merti towns most likely affect the impaired sites. This study demonstrated that the middle Awash experienced substantial ecological deterioration, indicating the need for restoration works to fit the water for socio-economic development.


Assuntos
Monitoramento Ambiental , Invertebrados , Animais , Etiópia , Ecossistema , Oxigênio , Fósforo
13.
Environ Sci Technol ; 56(5): 3159-3169, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35166536

RESUMO

Chemical contamination is an increasingly important conservation issue in urban runoff-impacted watersheds. Regulatory and restoration efforts typically evaluate limited conventional parameters and pollutants. However, complex urban chemical mixtures contain hundreds to thousands of organic contaminants that remain unidentified, unregulated, and poorly understood. This study aimed to develop broadly representative metrics of water quality impairment corresponding to previously documented biological degradation along gradients of human impacts. Stream samples (n = 65, baseflow/rainfall conditions, 2017-2018) were collected from 15 regional watersheds (Puget Sound, WA, USA) across an urbanization gradient defined by landscape characteristics. Surface water chemical composition characterized via non-targeted high-resolution mass spectrometry (7068 detections) was highly correlated with landscape-based urbanization gradient (p < 0.01) and season (p < 0.01). Landscape-scale changes in chemical composition closely aligned with two anchors of biological decline: coho salmon (Oncorhynchus kisutch) mortality risk (p < 0.001) and loss of stream macroinvertebrate diversity and abundance (p < 0.001). We isolated and identified 32 indicators for urban runoff impacts and corresponding receiving water ecological health, including well-known anthropogenic contaminants (e.g., caffeine, organophosphates, vehicle-derived chemicals), two related environmental transformation products, and a novel (methoxymethyl)melamine compound. Outcomes support data-directed selection of next-generation water quality indicators for prioritization and evaluation of watershed management efforts intended to protect aquatic ecosystems.


Assuntos
Oncorhynchus kisutch , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental/métodos , Humanos , Rios , Urbanização , Poluentes Químicos da Água/análise , Qualidade da Água
14.
Environ Res ; 212(Pt D): 113474, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594960

RESUMO

Healthy aquatic ecosystems can offer basic ecological services for the sustainable development of humans and society. Water quality greatly influences the macroinvertebrate community in aquatic ecosystems and can alter the aquatic ecosystem's health status. However, the quantitative relationship between macroinvertebrate community and water quality factors in rivers remains unclear, particularly in urban rivers, which are strongly affected by human activities. Therefore, a new framework for the quantitative analysis between macroinvertebrate community and key water quality driving factors was developed in the study, meanwhile, the aquatic ecosystem health conditions were evaluated and validated by different methods. The framework was applied to a typical urban river, the North Canal River, which is regarded as the "mother river" of Beijing. Combined with the redundancy analysis (RDA) and the threshold indicator taxa analysis (TITAN), the water quality driving factors and their indicator species were identified and the corresponding response threshold was determined. Based on the benthic index of biotic integrity (B-IBI), the multi-metric rapid bioassessment method, and the biological monitoring working party (BMWP) score, the aquatic ecosystem health condition in the basin was comprehensively evaluated. The results show that fluoride, biochemical oxygen demand, ammonia-nitrogen and total phosphorus were the key water quality driving factors influencing the community structure of macroinvertebrates. Four indicator species of ammonia-nitrogen were identified by the TITAN method with a threshold range of 1.09-6.94 mg L-1, and three indicator species of total phosphorus were identified with a threshold range of 0.48-1.27 mg L-1. According to the results of the aquatic ecosystem health assessment, the river ecosystem was generally unhealthy and the upstream was better than downstream; the health condition in the mountainous areas of Changping district was the best, while that in Chaoyang district and the central city area was the worst. The framework could provide a strong basis for ecological restoration and pollution control of the urban rivers and become an important tool for the rehabilitation of aquatic ecosystems.


Assuntos
Ecossistema , Qualidade da Água , Amônia , Animais , Pequim , China , Monitoramento Ambiental/métodos , Humanos , Invertebrados , Nitrogênio , Fósforo
15.
Environ Manage ; 70(6): 926-949, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207606

RESUMO

Biological communities in freshwater streams are often impaired by multiple stressors (e.g., flow or water quality) originating from anthropogenic activities such as urbanization, agriculture, or energy extraction. Restoration efforts in the Chesapeake Bay watershed, USA seek to improve biological conditions in 10% of freshwater tributaries and to protect the biological integrity of existing healthy watersheds. To achieve these goals, resource managers need to better understand which stressors are most likely driving biological impairment. Our study addressed this knowledge gap through two approaches: 1) reviewing and synthesizing published multi-stressor studies, and 2) examining 303(d) listed impairments linked to biological impairment as identified by jurisdiction regulatory agencies (the states within the watershed and the District of Columbia). Results identified geomorphology (i.e., physical habitat), salinity, and toxic contaminants as important for explaining variability in benthic community metrics in the literature review. Geomorphology (i.e., physical habitat and sediment), salinity, and nutrients were the most reported stressors in the jurisdictional impairment analysis. Salinity is likely a major stressor in urban and mining settings, whereas geomorphology was commonly reported in agricultural settings. Toxic contaminants, such as pesticides, were rarely measured; more research is needed to quantify the extent of their effects in the region. Flow alteration was also highlighted as an important urban stressor in the literature review but was rarely measured in the literature or reported by jurisdictions as a cause of impairment. These results can be used to prioritize stressor monitoring by managers, and to improve stressor identification methods for identifying causes of biological impairment.


Assuntos
Monitoramento Ambiental , Rios , Animais , Monitoramento Ambiental/métodos , Baías , Água Doce , Qualidade da Água , Ecossistema , Invertebrados
16.
Environ Monit Assess ; 194(10): 781, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098824

RESUMO

Urbanization and elevated selenium can negatively affect aquatic macroinvertebrate communities. These factors are often highly correlated in streams along the Front Range of the Rocky Mountains, USA. Understanding which factor is the primary driver of macroinvertebrate community health would aid in the development of appropriate management actions to mitigate their influence. Data collected from three sites in the Big Thompson River, Colorado, in seven different years from 2006 to 2016 were used to develop a random forest model to determine the relative importance of an index of urbanization and dissolved selenium levels in predicting the relative status of macroinvertebrate communities as measured by Colorado multi-metric index (MMI) scores. Based on the percent increase in mean square error (%incMSE) variable importance measure, dissolved selenium has a greater influence on MMI scores than a development index (19.5% vs 15.2%). There is a significantly negative relationship between MMI scores and dissolved selenium levels. This relationship predicts a MMI score of 29.2 under the current dissolved selenium standard of 4.6 µg/L and 38.6 under the suggested lower standard of 3.1 µg/L. Although improvements in MMI score may result with any reduction in dissolved selenium, other factors may limit the maximum expected MMI scores in the absence of selenium as the intercept of the relationship is 57.9 on a scale of 0-100.


Assuntos
Selênio , Urbanização , Colorado , Monitoramento Ambiental , Rios , Selênio/análise , Selênio/toxicidade
17.
Environ Monit Assess ; 195(1): 210, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534270

RESUMO

This study evaluates the changes in the structure of the macroinvertebrate functional feeding groups (FFGs) of the Hassar Stream (northeast of Casablanca) following the installation of Mediouna's wastewater treatment plant (WWTP). Data on water quality and the macroinvertebrate fauna were collected at seven sample points from November 2013 to October 2014. Macroinvertebrates were used to assess the impact of physicochemical and hydromorphological properties on the FFG organization and resilience. Redundancy analysis (RDA) was employed to examine the distribution of FFGs along this stream. Based on the FFGs' relative abundance, collector-gatherers account for 39.06% of the macroinvertebrates' assemblage, followed by shredders (28.41%), collector-filters (18.76%), scrapers (7.16%), and predators (6.6%). The FFG ratios revealed that the environment was highly heterotrophic (P/R < 0.75), and all studied stations had relatively stable substrates. In addition, the ratios indicated that the studied stations had a functional riparian zone (CPOM/FPOM > 0.25), except for stations S1 and S2. Simultaneously, the RDA model revealed that the distribution of the FFGs closely followed fluctuations in the water quality (BOD5, NH4+, PO43-, EC, and Cl-) and hydromorphic properties (flow and depth). These findings highlight the importance of studying macroinvertebrate FFGs as a complementary way to assess the aquatic ecosystems' ecological integrity and resilience following anthropogenic impact reduction.


Assuntos
Ecossistema , Invertebrados , Animais , Rios/química , Monitoramento Ambiental , Marrocos
18.
Environ Monit Assess ; 194(4): 319, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357588

RESUMO

Stream restoration projects undertaken as compensatory mitigation pursuant to Sect. 404 of the U.S. Clean Water Act must be evaluated using ecological performance standards that are objective and verifiable and based on the best available science that can be measured or assessed in a practicable manner. While performance standards for physical stream conditions are common, evaluating biological conditions following stream restoration activities has proven more problematic. We developed a macroinvertebrate multimetric index for headwater streams in three Southeastern Plains subecoregions (65 g, 65 h, and 65 l) of Georgia using 76 sites sampled in 2019. An abiotic disturbance gradient based on principal components analysis of instream habitat, physicochemical, and land use variables was employed to assign condition classes (good, fair, poor) among sites within each subecoregion. We identified genus-level macroinvertebrate richness and proportional richness of traits-based metrics (habit and functional feeding groups) that demonstrated high discriminatory power between good and poor abiotic conditions and response to individual stressors. Subecoregion-specific metrics were then standardized and aggregated to develop the final index and biological reference curves. These biological reference curves represent a continuum of relevant regional conditions against which a stream enhancement or restoration project may be assessed relative to other streams throughout the region and allow for the award of mitigation credit, if applicable, to be based directly on the relative improvement of biological conditions. These biological performance standards will supplement other performance standards (hydrologic and geomorphic measures) necessary to evaluate the effectiveness of stream restoration projects in the study area.


Assuntos
Invertebrados , Rios , Animais , Ecossistema , Monitoramento Ambiental , Georgia , Invertebrados/fisiologia
19.
Oecologia ; 197(3): 551-564, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34405300

RESUMO

Parasites are important players in ecological communities that can shape community structure and influence ecosystem energy flow. Yet beyond their effects on hosts, parasites can also function as an important prey resource for predators. Predators that consume infectious stages in the environment can benefit from a nutrient-rich prey item while concurrently reducing transmission to downstream hosts, highlighting the broad importance of this interaction. Less clear, however, are the specific characteristics of parasites and predators that increase the likelihood of consumption. Here, we determine what combination(s) of predator and parasite morphological traits lead to high parasite consumption. We exposed the infectious stages (cercariae) of five trematode (fluke) taxa to aquatic insect predators with varying foraging strategies and morphologies. Across the 19 predator-parasite combinations tested, damselfly predators in the family Coenagrionidae were, on average, the most effective predators of cercariae, consuming between 13 and 55% of administered cercariae. Large-bodied cercariae of Ribeiroia ondatrae had the highest average vulnerability to predation, with 37-48% of cercariae consumed. The interaction between predator head width and cercariae tail size strongly influenced the probability of consumption: small-bodied predators were the most effective consumers, particularly for larger tailed parasites. Thus, the likelihood of parasite consumption depended strongly on the relative size between predator and parasite. Our study helps establish that predation on free-living parasites largely follows a broader predator-prey framework. This will help to identify which predator and parasite combinations will likely have high consumptive interactions, potentially reducing parasite transmission in natural populations.


Assuntos
Odonatos , Parasitos , Trematódeos , Animais , Ecossistema , Comportamento Predatório
20.
Ecotoxicol Environ Saf ; 219: 112346, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022627

RESUMO

Modified composite biochar offers a cost-effective solution for the remediation of contaminated sediments; however, few studies have evaluated the effects of modified composite biochar amendment on the ecotoxicity of contaminated sediment based on benthic macroinvertebrates. A 21-day sediment toxicity test was conducted using the freshwater snail Bellamya aeruginosa to examine the intrinsic ecotoxicity of a novel KOH-modified composite biochar (KOH-CBC) and its efficacy for reducing the bioavailability, uptake, and ecotoxicity of perfluorooctanoic acid (PFOA). It was found that KOH-CBC is toxic to B. aeruginosa, which may be attributed to its high polycyclic aromatic hydrocarbons (PAHs) content and alkalinity. The addition of KOH-CBC to PFOA-contaminated sediments can markedly reduce the bioavailability and uptake of PFOA by more than 90% and 50%, respectively, and subsequently alleviate the toxicity of PFOA to B. aeruginosa by at least 30%. Increasing the KOH-CBC dosage is not beneficial for further mitigating the toxicity of PFOA-contaminated sediments. Our findings imply that KOH-CBC is a promising sorbent for the in-situ remediation of PFOA-contaminated sediments. Application of acidified KOH-CBC at a dosage of approximately 1-3% will be sufficient to control the ecotoxicity of PFOA; however, its long-term environmental effects should be further validated.


Assuntos
Caprilatos/toxicidade , Recuperação e Remediação Ambiental/métodos , Fluorocarbonos/toxicidade , Disponibilidade Biológica , Carvão Vegetal , Sedimentos Geológicos , Hidróxidos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Compostos de Potássio/química , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa