Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(28): 8609-8618, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954738

RESUMO

Although biomacromolecules are promising cytosolic drugs which have attracted tremendous attention, the major obstacles were the cellular membrane hindering the entrance and the endosome entrapment inducing biomacromolecule degradation. How to avoid those limitations to realize directly cytosolic delivery was still a challenge. Here, we prepared oligoarginine modified lipid to assemble a nanovesicle for biomacromolecules delivery, including mRNA (mRNA) and proteins which could be directly delivered into the cytoplasm of dendritic cells through subendocytosis-mediated membrane fusion. We named this membrane fusion lipid nanovesicle as MF-LNV. The mRNA loaded MF-LNV as nanovaccines showed efficient antigen expression to elicit robust immuno responses for cancer therapy. What's more, the antigen protein loaded MF-LNV as nanovaccines elicits much stronger CD8+ T cell specific responses than lipid nanoparticles through normal uptake pathways. This MF-LNV represented a refreshing strategy for intracellular delivery of the biomacromolecule.


Assuntos
Lipídeos , Lipídeos/química , Animais , Humanos , Nanopartículas/química , Células Dendríticas , RNA Mensageiro/genética , RNA Mensageiro/administração & dosagem , Camundongos , Fusão de Membrana , Sistemas de Liberação de Medicamentos , Linfócitos T CD8-Positivos/imunologia
2.
Cancers (Basel) ; 15(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37370850

RESUMO

Macromolecular therapeutics such as nucleic acids, peptides, and proteins have the potential to overcome treatment barriers for cancer. For example, nucleic acid or peptide biologics may offer an alternative strategy for attacking otherwise undruggable therapeutic targets such as transcription factors and similar oncologic drivers. Delivery of biological therapeutics into tumor cells requires a robust system of cell penetration to access therapeutic targets within the cell interior. A highly effective means of accomplishing this may be borrowed from cell-penetrating pathogens such as viruses. In particular, the cell entry function of the adenovirus penton base capsid protein has been effective at penetrating tumor cells for the intracellular deposition of macromolecular therapies and membrane-impermeable drugs. Here, we provide an overview describing the evolution of tumor-targeted penton-base-derived nano-capsids as a framework for discussing the requirements for overcoming key barriers to macromolecular delivery. The development and pre-clinical testing of these proteins for therapeutic delivery has begun to also uncover the elusive mechanism underlying the membrane-penetrating function of the penton base. An understanding of this mechanism may unlock the potential for macromolecular therapeutics to be effectively delivered into cancer cells and to provide a treatment option for tumors resisting current clinical therapies.

3.
ACS Appl Mater Interfaces ; 12(52): 57810-57820, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33326227

RESUMO

Hierarchically organized silica nanomaterials have shown great promise for nanomedicine. However, the synthesis of silica nanomaterials with a small size and macromolecular loading pore is still a big challenge. Herein, orderly curled silica nanosheets (OCSNs) with a ∼42 nm diameter and orderly connected large channels (∼13.4 nm) were successfully prepared for the first time. The key to the formation of the unique structure (OCSNs) is using an oil/water reaction system with high concentrations of the surfactant and alkali. The prepared OCSNs exhibit a long blood circulation halftime (0.97 h) and low internalization in the reticuloendothelial system. Notably, the large superficial channels can concurrently house large guest molecules (siRNA) and chemotherapeutic drugs. Furthermore, drug-loaded OCSNs modified with polyglutamic acids can greatly increase the accumulation of incorporated siRNA and doxorubicin in solid tumors and restrain the growth of drug-resistant orthotopic breast cancer by inducing cell apoptosis. Overall, we report the preparation of hierarchically OCSNs; their small size and macromolecular loading pores are very promising for the delivery of large guest molecules and chemotherapeutic drugs for cancer therapy.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Resistencia a Medicamentos Antineoplásicos/genética , Nanoestruturas/química , RNA Interferente Pequeno/química , Dióxido de Silício/química , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Doxorrubicina/química , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Fagocitose/efeitos dos fármacos , Ácido Poliglutâmico/química , Porosidade , RNA Interferente Pequeno/genética
4.
J Biomater Sci Polym Ed ; 28(10-12): 1097-1108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28277006

RESUMO

Membrane disruptive peptides (also called membrane fusogenic peptides) have been employed for cytosolic delivery of macromolecules such as nucleic acids and proteins. We reported previously that the cationic graft copolymer, poly(allylamine)-graft-dextran (PAA-g-Dex), augments membrane disruptive activity of the negatively charged E5 peptide. Strong membrane disruptive activity was observed in the presence of the copolymer at both acidic and neutral pH. In this paper, activities of E5/PAA-g-Dex mixture were further explored. Membrane permeabilization activity of E5/PAA-g-Dex was dependent on concentrations of both E5 and PAA-g-Dex, indicating that a complex between E5 and PAA-g-Dex produced the activity. Since the activity of peptide/PAA-g-Dex was peptide sequence-specific, we reasoned that PAA-g-Dex activated membrane-permeabilization activity by facilitating folding of E5 into its active conformation. The membrane permeabilization activity of E5/PAA-g-Dex resulted in transportation of bovine serum albumin into HL-60 cells with less cellular toxicity than digitonin, a naturally occurring surfactant used for delivery of macromolecules into cells.


Assuntos
Alilamina/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/metabolismo , Polímeros/química , Alilamina/análogos & derivados , Permeabilidade da Membrana Celular , Células HL-60 , Humanos , Concentração de Íons de Hidrogênio , Transporte Proteico , Soroalbumina Bovina/metabolismo
5.
J Control Release ; 241: 186-193, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27686583

RESUMO

Mild hyperthermia has been used in combination with polymer therapeutics to further increase delivery to solid tumors and enhance efficacy. An attractive method for generating heat is through non-invasive high intensity focused ultrasound (HIFU). HIFU is often used for ablative therapies and must be adapted to produce uniform mild hyperthermia in a solid tumor. In this work a magnetic resonance imaging guided HIFU (MRgHIFU) controlled feedback system was developed to produce a spatially uniform 43°C heating pattern in a subcutaneous mouse tumor. MRgHIFU was employed to create hyperthermic conditions that enhance macromolecular delivery. Using a mouse model with two subcutaneous tumors, it was demonstrated that MRgHIFU enhanced delivery of both Evans blue dye (EBD) and Gadolinium-chelated N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. The EBD accumulation in the heated tumors increased by nearly 2-fold compared to unheated tumors. The Gadolinium-chelated HPMA copolymers also showed significant enhancement in accumulation over control as evaluated through MRI T1-mapping measurements. Results show the potential of HIFU-mediated hyperthermia for enhanced delivery of polymer therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Hipertermia Induzida/métodos , Substâncias Macromoleculares/administração & dosagem , Acrilamidas/administração & dosagem , Acrilamidas/metabolismo , Animais , Azul Evans/administração & dosagem , Azul Evans/metabolismo , Gadolínio/administração & dosagem , Gadolínio/metabolismo , Substâncias Macromoleculares/metabolismo , Imageamento por Ressonância Magnética , Camundongos Endogâmicos , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa