Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39201784

RESUMO

Magnetic Fe3O4 nanoparticles (MNPs) functionalized with (3-aminopropylo)trietoksysilan (APTES) or N-carboxymethylchitosan (CMC) were proposed as nanocarriers of methotrexate (MTX) to target ovarian cancer cell lines. The successful functionalization of the obtained nanostructures was confirmed by FT-IR spectroscopy. The nanoparticles were characterized by transmission electron spectroscopy (TEM) and dynamic light scattering (DLS) techniques. Their potential zeta, magnetization, and hyperthermic properties were also explored. MTX was conjugated with the nanocarriers by ionic bonds or by amide bonds. The drug release kinetics were examined at different pH and temperatures. The MTT assay showed no toxicity of the MNPs[APTES] and MNPs[CMC]. Finally, the cytotoxicity of the nanostructures with MTX attached towards the ovarian cancer cells was measured. The sensitivity and resistance to methotrexate was determined in simplistic 2D and spheroid 3D conditions. The cytotoxicity tests of the tested nanostructures showed similar values for inhibiting the proliferation of ovarian cancer cells as methotrexate in its free form. Conjugating MTX with nanoparticles allows the drug to be directed to the target site using an external magnetic field, reducing overall toxicity. Combining this approach with hyperthermia could enhance the therapeutic effect in vivo compared to free MTX, though further research on advanced 3D models is needed.


Assuntos
Metotrexato , Neoplasias Ovarianas , Metotrexato/química , Metotrexato/farmacologia , Metotrexato/administração & dosagem , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Linhagem Celular Tumoral , Nanopartículas de Magnetita/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Liberação Controlada de Fármacos , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos
2.
Cutan Ocul Toxicol ; 43(1): 69-74, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37908111

RESUMO

PURPOSE: Retinoblastoma (RB) is one of the most important cancers in children with a higher rate of prevalence in developing countries. Despite different approaches to the treatment of RB, it seems necessary to discover a new approach to its treatment. Today, mitochondria are recognised as an important target in the treatment of cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) have been studied by researchers due to their important biological effects. METHODS: In this study, the effects of SPIONs on mitochondria isolated from Y79 retinoblastoma cells were investigated. RESULTS: The results showed that SPIONs were able to increase the reactive oxygen species (ROS) level and subsequently damage the mitochondrial membrane and release cytochrome c a as one of the important pro-apoptotic proteins of RB mitochondria. Furthermore, the results indicated a decrease in cell viability and an increase in caspase-3 activity in Y79 retinoblastoma cells. CONCLUSIONS: These events can lead to the killing of cancerous mitochondria. Our results suggest that SPIONs can cause mitochondrial dysfunction and death in RB mitochondria.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Retinoblastoma/tratamento farmacológico , Retinoblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Mitocôndrias , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/metabolismo
3.
Small ; 19(49): e2302856, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596716

RESUMO

Magnetic iron oxide nanoparticles (MIONs) based T2 -weighted magnetic resonance imaging (MRI) contrast agents (CAs) are liver-specific with good biocompatibility, but have been withdrawn from the market and replaced with Eovist (Gd-EOB-DTPA) due to their inherent limitations (e.g., susceptibility to artifacts, high magnetic moment, dark signals, long processing time of T2 imaging, and long waiting time for patients after administration). Without the disadvantages of Gd-chelates and MIONs, the recently emerging exceedingly small MIONs (ES-MIONs) (<5 nm) are promising T1 CAs for MRI. However, there are rare review articles focusing on ES-MIONs for T1 -weighted MRI. Herein, the recent progress of ES-MIONs, including synthesis methods (the current basic synthesis methods and improved methods), surface modifications (artificial polymers, natural polymers, zwitterions, and functional protein), T1 -MRI visual strategies (structural remodeling, reversible self-assemblies, metal ions doped, T1 /T2 dual imaging modes, and PET/MRI strategy), and imaging-guided cancer therapy (chemotherapy, gene therapy, ferroptosis therapy, photothermal therapy, photodymatic therapy, radiotherapy, immuotherapy, sonodynamic therapy, and multimode therapy), is summarized. The detailed description of synthesis methods and applications of ES-MIONs in this review is anticipated to attract extensive interest from researchers in different fields and promote their participation in the establishment of ES-MIONs based nanoplatforms for tumor theranostics.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro , Polímeros
4.
Small ; 18(27): e2203033, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35665598

RESUMO

In vivo, natural biomaterials are frequently anisotropic, exhibiting directional microstructures and mechanical properties. It remains challenging to develop such anisotropy in synthetic materials. Here, a facile one-step approach for in situ fabrication of hydrogels with hierarchically anisotropic architectures and direction-dependent mechanical properties is proposed. The anisotropic hydrogels, composed of a fibrous gel network (0.1 wt%), cross-linked with magnetic nanoparticles (spheres, rods, and wires, <0.1 wt%) are readily formed in the presence of very low magnetic fields (<20 mT). The anisotropy of the nanoparticles is transduced to the polymer network, leading to macroscopic anisotropy, for instance, in mechanical properties. Electrostatic repulsion by the negatively charged nanoparticles induces an additional layer of order in the material, perpendicular to the magnetic field direction. The straightforward fabrication strategy allows for stepwise deposition of layers with different degrees or directions of anisotropy, which enables the formation of complex structures that are able to mimic some of the complex hierarchical architectures found in biology. It is anticipated that this approach of hydrogel alignment may serve as a guide for designing advanced biomaterials in tissue engineering.


Assuntos
Biomimética , Hidrogéis , Anisotropia , Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual
5.
BMC Cancer ; 22(1): 1062, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241982

RESUMO

BACKGROUND: Current pre-operative Sentinel Lymph Node (SLN) mapping using dual tracing is associated with drawbacks (radiation exposure, logistic challenges). Superparamagnetic iron oxide (SPIO) is a non-inferior alternative for SLN mapping in breast cancer patients. Limited research has been performed on SPIO use and pre-operative MRI in melanoma patients to identify SLNs.  METHODS: Healthy participants underwent MRI-scanning pre- and post SPIO-injection during 20 min. Workflow protocols varied in dosage, massage duration, route of administration and injection sites. The first lymph node showing a susceptibility artefact caused by SPIO accumulation was considered as SLN. RESULTS: Artefacts were identified in 5/6 participants. Two participants received a 0.5 ml subcutaneous injection and 30-s massage, of which one showed an artefact after one hour. Four participants received a 1.0 ml intracutaneous injection and two-minute massage, leading to artefacts in all participants. All SLNs were observed within five minutes, except after lower limb injection (30 min). CONCLUSION: SPIO and pre-operative MRI-scanning seems to be a promising alternative for SLN visualization in melanoma patients. An intracutaneous injection of 1.0 ml SPIO tracer, followed by a two-minute massage seems to be the most effective technique, simplifying the pre-operative pathway. Result will be used in a larger prospective study with melanoma patients. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05054062) - September 9, 2021.


Assuntos
Melanoma , Linfonodo Sentinela , Humanos , Compostos Férricos , Voluntários Saudáveis , Linfonodos/patologia , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Melanoma/diagnóstico por imagem , Melanoma/patologia , Projetos Piloto , Estudos Prospectivos , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela/métodos , Fluxo de Trabalho
6.
J Nanobiotechnology ; 20(1): 350, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908057

RESUMO

Magnetic resonance imaging (MRI) has been widely using in clinical diagnosis, and contrast agents (CAs) can improve the sensitivity MRI. To overcome the problems of commercial Gd chelates-based T1 CAs, commercial magnetic iron oxide nanoparticles (MIONs)-based T2 CAs, and reported exceedingly small MIONs (ES-MIONs)-based T1 CAs, in this study, a facile co-precipitation method was developed to synthesize biodegradable and biocompatible ES-MIONs with excellent water-dispersibility using poly (aspartic acid) (PASP) as a stabilizer for T1-weighted MRI of tumors. After optimization of the synthesis conditions, the final obtained ES-MION9 with 3.7 nm of diameter has a high r1 value (7.0 ± 0.4 mM-1 s-1) and a low r2/r1 ratio (4.9 ± 0.6) at 3.0 T. The ES-MION9 has excellent water dispersibility because of the excessive -COOH from the stabilizer PASP. The pharmacokinetics and biodistribution of ES-MION9 in vivo demonstrate the better tumor targetability and MRI time window of ES-MION9 than commercial Gd chelates. T1-weighted MR images of aqueous solutions, cells and tumor-bearing mice at 3.0 T or 7.0 T demonstrate that our ES-MION9 has a stronger capability of enhancing the MRI contrast comparing with the commercial Gd chelates. The MTT assay, live/dead staining of cells, and H&E-staining indicate the non-toxicity and biosafety of our ES-MION9. Consequently, the biodegradable and biocompatible ES-MION9 with excellent water-dispersibility is an ideal T1-weighted CAs with promising translational possibility to compete with the commercial Gd chelates.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Animais , Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética/métodos , Camundongos , Neoplasias/patologia , Distribuição Tecidual , Água
7.
Nano Lett ; 21(16): 6740-6747, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387494

RESUMO

The mechanical environment of a cell is not constant. This dynamic behavior is exceedingly difficult to capture in (synthetic) in vitro matrices. This paper describes a novel, highly adaptive hybrid hydrogel composed of magnetically sensitive magnetite nanorods and a stress-responsive synthetic matrix. Nanorod rearrangement after application of (small) magnetic fields induces strain in the network, which results in a strong (over 10-fold) stiffening even at minimal (2.5 wt %) nanorod concentrations. Moreover, the stiffening mechanism yields a fast and fully reversible response. In the manuscript, we quantitatively analyze that forces generated by the particles are comparable to cellular forces. We demonstrate the value of magnetic stiffening in a 3D MCF10A epithelial cell experiment, where simply culturing on top of a permanent magnet gives rise to changes in the cell morphology. This work shows that our hydrogels are uniquely suited as 3D cell culture systems with on-demand adaptive mechanical properties.


Assuntos
Técnicas de Cultura de Células , Hidrogéis , Fenômenos Magnéticos , Magnetismo , Estresse Mecânico
8.
Artif Organs ; 45(11): 1272-1299, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34245037

RESUMO

Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro/química , Propriedades de Superfície , Engenharia Biomédica/métodos , Técnicas Biossensoriais , Separação Celular/métodos , Sistemas de Liberação de Medicamentos , Humanos , Imageamento por Ressonância Magnética/métodos , Engenharia Tecidual
9.
Small ; 16(45): e2003969, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33053265

RESUMO

Magnetic nanomaterials are a promising class of contrast agents for magnetic resonance imaging (MRI). However, their poor stability and low relaxivity are major challenges hindering their clinical applications. In this study, magnetic theranostic nanoagents based on polydopamine-modified Fe3 O4 (Fe3 O4 @PDA) nanocomposites are fabricated for MRI-guided photothermal therapy (PTT) cancer treatments. Their high transverse relaxivity of 337.8 mM-1 s-1 makes these Fe3 O4 @PDA nanocomposites a promising T2 -weighted MRI contrast agent for cancer diagnosis and image-guided cancer therapy. Due to the good photothermal effect of polydopamine (PDA), the tumors of 4T1 tumor-bearing mice are completely excised by PTT. Most importantly, the PDA shell also improves the stability of the Fe3 O4 @PDA nanocomposites, which contributes to their excellent, long-term performance in MRI and PTT applications. Their good stability, high T2 relaxivity, robust biocompatibility, and satisfactory treatment effect give these Fe3 O4 @PDA nanocomposites great potential for use in cancer theranostics.


Assuntos
Nanocompostos , Nanopartículas , Animais , Indóis , Imageamento por Ressonância Magnética , Camundongos , Fototerapia , Terapia Fototérmica , Polímeros , Nanomedicina Teranóstica
10.
Small ; 16(41): e2002733, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32945130

RESUMO

A versatile breast cancer-targeting nanocomposite therapeutic combining docetaxel (DXL), polyvinyl alcohol (PVA) network for controlled release, and silica-protected magnetic iron oxide nanoparticles (Fe3 O4 NPs) for targeted delivery and gold nanoparticles (AuNPs) for plasmonic photothermal therapy (PPTT) is presented in this work. First, the designed nanocomposite is magnetically directed for cancer-targeted therapy confirmed by computerized tomography (CT) scans. Second, 10% DXL by mass is loaded into PVA, a pH and temperature responsive gel, for controlled release. Third, PPTT is confirmed with Au/Fe3 O4 /PVA-10%DXL using a prototype circulation system and then for tumor treatment in vivo; Au/Fe3 O4 /PVA-10%DXL is conveniently directed and the entrapped DXL is selectively released (≈96%) via the interaction of green and near-infrared (NIR) light with the localized surface plasmon resonance of AuNPs. A 75% cell death is reported from in vitro studies with DXL doses as low as 20 µg mL-1 of Au/Fe3 O4 /PVA-10%DXL, and a 70% tumor growth inhibition is demonstrated by in vivo experiments with the biosafety studies confirming minimal side effects to other organs. Overall, the developed Au/Fe3 O4 /PVA-10%DXL has a strong potential to simultaneously enhance CT imaging contrast together with the targeted delivery of DXL.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanocompostos , Neoplasias da Mama/tratamento farmacológico , Docetaxel , Feminino , Ouro , Humanos
11.
Int J Hyperthermia ; 37(3): 100-107, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426988

RESUMO

BACKGROUND: Magnetic fluid heating has great potential in the fields of thermal medicine and cryopreservation. However, variations among experimental parameters, analysis methods and experimental uncertainty make quantitative comparisons of results among laboratories difficult. Herein, we focus on the impact of calculating the specific absorption rate (SAR) using Time-Rise and Box-Lucas fitting. Time-Rise assumes adiabatic conditions, which is experimentally unachievable, but can be reasonably assumed (quasi-adiabatic) only for specific and limited evaluation times when heat loss is negligible compared to measured heating rate. Box-Lucas, on the other hand, accounts for heat losses but requires longer heating. METHODS: Through retrospective analysis of data obtained from two laboratories, we demonstrate measurement time is a critical parameter to consider when calculating SAR. Volumetric SAR were calculated using the two methods and compared across multiple iron-oxide nanoparticles. RESULTS: We observed the lowest volumetric SAR variation from both fitting methods between 1-10 W/mL, indicating an ideal SAR range for heating measurements. Furthermore, our analysis demonstrates that poorly chosen fitting method can generate reproducible but inaccurate SAR. CONCLUSION: We provide recommendations to select measurement time for data analysis with either Modified Time-Rise or Box-Lucas method, and suggestions to enhance experimental precision and accuracy when conducting heating experiments.


Assuntos
Nanopartículas de Magnetita , Calefação , Temperatura Alta , Magnetismo , Estudos Retrospectivos
12.
J Nanobiotechnology ; 18(1): 6, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910856

RESUMO

BACKGROUND: Haptoglobin is an acute-phase protein used as predicting diagnostic biomarker both in humans (i.e., diabetes, ovarian cancer, some neurological and cardiovascular disorders) and in animals (e.g., bovine mastitis). The latter is a frequent disease of dairy industry with staggering economical losses upon decreased milk production and increased health care costs. Early stage diagnosis of the associated diseases or inflammation onset is almost impossible by conventional analytical manners. RESULTS: The present study demonstrates a simple, rapid, and cost-effective label-free chemiluminescence bioassay based on magnetite nanoparticles (MNPs) for sensitive detection of haptoglobin by employing the specific interaction of hemoglobin-modified MNPs. The resulting haptoglobin-hemoglobin complex inhibits the peroxidase-like activity of luminol/H2O2-hemoglobin-MNPs sensing scheme and reduces the chemiluminescence intensities correspondingly to the innate haptoglobin concentrations. Quantitative detection of bovine haptoglobin was obtained within the range of 1 pg mL-1 to 1 µg mL-1, while presenting 0.89 pg mL-1 limit of detection. Moreover, the influence of causative pathogenic bacteria (i.e., Streptococcus dysgalactiae and Escherichia coli) and somatic cell counts (depicting healthy, sub-clinical and clinical mastitis) on the emitted chemiluminescence radiation were established. The presented bioassay quantitative performances correspond with a standardized assay kit in differentiating dissimilar milk qualities. CONCLUSIONS: Overall, the main advantage of the presented sensing concept is the ability to detect haptoglobin, at clinically relevant concentrations within real milk samples for early bio-diagnostic detection of mastitis and hence adjusting the precise treatment, potentially initiating a positive influence on animals' individual health and hence on dairy farms economy.


Assuntos
Biomarcadores/análise , Haptoglobinas/análise , Medições Luminescentes , Nanopartículas de Magnetita/química , Animais , Bioensaio , Calibragem , Bovinos , Contagem de Células , Nanopartículas de Magnetita/ultraestrutura , Leite/microbiologia
13.
J Cell Biochem ; 120(2): 1185-1192, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30362604

RESUMO

Since the morphology of the rooster spermatozoa is different to other animal spermatozoa, the aim of the current study was to investigate the transfection efficiency and cytotoxicity of polyethyleneimine (PEI) coated magnetic iron oxide nanoparticles (MION) on these cells. Liposome/nucleic acid (NA) complexes and PEI-coated MION linked to the labeled oligonucleotides were used. Viability and percentage of exogenous nucleic acid uptake of spermatozoa were measured by flow cytometry analyses. The results showed a significant increase in exogenous nucleic acid uptake by rooster spermatozoa (P < 0.001) when treated with MION-NA complexes in comparison to liposome/NA. There were no significant differences between efficiency of lipid-based transfection agent and MION (P > 0.05) during short incubation period. MION with or without magnetic field, did not show significant cytotoxicity while the lipid-based transfection agent significantly decreased (P < 0.05) the viability of rooster spermatozoa. Results of this study showed that magnetofection and lipofection were both effective methods which increased exogenous nucleic acid uptake by rooster spermatozoa. However, the magnetofection method was more successful in maintaining the cell's survival than lipofection method.

14.
Mikrochim Acta ; 186(12): 852, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31776681

RESUMO

An anion exchange solid-phase sorbent is described. Chitosan coated magnetite nanoparticles were modified with polyethylenimine which is positively charged at pH 3 and therefore can be used for the magnet-supported enrichment of phosphopeptides which are negatively charged at this pH value. A 2-step strategy was used to synthesize the sorbent. The materials were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry and magnetic moment analysis. The anion exchanger was applied to extract phosphopeptides from a ß-casein digest. Characteristic analytical figures include (a) a loading buffer of pH 3, (b) and elution buffer of pH 11, (c) a loading time of 5 min, (d) good selectivity (the ß-casein to BSA ratio is 1:1000), and (e) excellent sensitivity (1 fmol). The optimized method was applied to egg yolk digest, non-fat milk digest, and diluted human serum. Graphical abstractSchematic representation of synthesis of PEI@chitosan@Fe3O4 nanoparticles, and of the enrichment of phosphopeptides by magnetic solid phase extraction prior to the determination of the peptides by MALDI-MS analysis.


Assuntos
Quitosana/química , Nanopartículas de Magnetita/química , Fosfopeptídeos/isolamento & purificação , Polietilenoimina/química , Adsorção , Animais , Ânions/química , Bovinos , Gema de Ovo/química , Humanos , Leite/química , Tamanho da Partícula , Fosfopeptídeos/sangue , Fosfopeptídeos/química , Propriedades de Superfície
15.
Mol Pharm ; 14(5): 1352-1364, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27776215

RESUMO

Magnetic iron oxide nanoparticles (MIONs) have attracted enormous attention due to their wide applications, including for magnetic separation, for magnetic hyperthermia, and as contrast agents for magnetic resonance imaging (MRI). This review article introduces the methods of synthesizing MIONs, and their application as MRI contrast agents. Currently, many methods have been reported for the synthesis of MIONs. Herein, we only focus on the liquid-based synthesis methods including aqueous phase methods and organic phase methods. In addition, the MIONs larger than 10 nm can be used as negative contrast agents and the recently emerged extremely small MIONs (ES-MIONs) smaller than 5 nm are potential positive contrast agents. In this review, we focus on the ES-MIONs because ES-MIONs avoid the disadvantages of MION-based T2- and gadolinium chelate-based T1-weighted contrast agents.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química
16.
Molecules ; 22(1)2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28125003

RESUMO

In this paper we report a facile method for preparing co-immobilized enzyme and magnetic nanoparticles (MNPs) using metal coordinated hydrogel nanofibers. Candida rugosa lipase (CRL) was selected as guest protein. For good aqueous dispersity, low price and other unique properties, citric acid-modified magnetic iron oxide nanoparticles (CA-Fe3O4 NPs) have been widely used for immobilizing enzymes. As a result, the relative activity of CA-Fe3O4@Zn/AMP nanofiber-immobilized CRL increased by 8-fold at pH 10.0 and nearly 1-fold in a 50 °C water bath after 30 min, compared to free CRL. Moreover, the immobilized CRL had excellent long-term storage stability (nearly 80% releative activity after storage for 13 days). This work indicated that metal-nucleotide nanofibers could efficiently co-immobilize enzymes and MNPs simultaneously, and improve the stability of biocatalysts.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/química , Hidrogéis/química , Lipase/química , Nanopartículas de Magnetita/química , Nanofibras/química , Biocatálise , Estabilidade Enzimática
17.
Molecules ; 21(8)2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27472309

RESUMO

Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3-5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50-60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Chlamydomonas reinhardtii/enzimologia , Clorofila/química , Compostos Férricos/química , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Biocatálise , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Fenômenos Eletromagnéticos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Nanopartículas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Sci Technol Adv Mater ; 16(2): 023501, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877761

RESUMO

This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed.

19.
Artigo em Inglês | MEDLINE | ID: mdl-26180919

RESUMO

Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.


Assuntos
Compostos Férricos/química , Nanopartículas Metálicas/química , Esgotos/química , Floculação , Magnetismo , Modelos Químicos , Modelos Teóricos , Reprodutibilidade dos Testes , Água/química , Purificação da Água/métodos
20.
Artigo em Inglês | MEDLINE | ID: mdl-24844892

RESUMO

The aim of this study was to investigate the adsorption of bacteriophage MS2 by magnetic iron oxide nanoparticles in aqueous solutions. The characteristics of synthetic nanoparticles were analyzed using various techniques. The adsorption of MS2 to the nanoparticles was examined under various conditions using batch experiments. The results showed that the nanoparticles were mainly composed of maghemite along with goethite. The nanoparticles had a specific surface area of 82.2 m(2) g(-1), with an average pore diameter of 13.2 nm and total pore volume of 0.2703 cm(3) g(-1). The results demonstrated that the removal of MS2 by the nanoparticles was very fast. A 3.15 log removal (99.93%) was achieved within 60 min (adsorbent dose = 2 g L(-1); MS2 concentration = 2.94 × 10(6) pfu mL(-1)). The log removal decreased from 3.52 to 0.36 with increasing MS2 concentration from 1.59 × 10(4) to 5.01 × 10(7) pfu mL(-1). Also, the effect of solution pH on MS2 removal was minimal at pH 4.2-8.4. The removal of MS2 decreased in the presence of anions such as carbonate and phosphate, with the latter showing a greater hindrance effect on removal. This study demonstrated that magnetic iron oxide nanoparticles are very effective in the removal of MS2 from aqueous solutions.


Assuntos
Compostos Férricos/química , Compostos de Ferro/química , Levivirus/química , Nanopartículas Metálicas/química , Minerais/química , Poluentes da Água/química , Purificação da Água/métodos , Adsorção , Fenômenos Magnéticos , Soluções
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa