Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 155, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641616

RESUMO

BACKGROUND: Classification of binary data arises naturally in many clinical applications, such as patient risk stratification through ICD codes. One of the key practical challenges in data classification using machine learning is to avoid overfitting. Overfitting in supervised learning primarily occurs when a model learns random variations from noisy labels in training data rather than the underlying patterns. While traditional methods such as regularization and early stopping have demonstrated effectiveness in interpolation tasks, addressing overfitting in the classification of binary data, in which predictions always amount to extrapolation, demands extrapolation-enhanced strategies. One such approach is hybrid mechanistic/data-driven modeling, which integrates prior knowledge on input features into the learning process, enhancing the model's ability to extrapolate. RESULTS: We present NoiseCut, a Python package for noise-tolerant classification of binary data by employing a hybrid modeling approach that leverages solutions of defined max-cut problems. In a comparative analysis conducted on synthetically generated binary datasets, NoiseCut exhibits better overfitting prevention compared to the early stopping technique employed by different supervised machine learning algorithms. The noise tolerance of NoiseCut stems from a dropout strategy that leverages prior knowledge of input features and is further enhanced by the integration of max-cut problems into the learning process. CONCLUSIONS: NoiseCut is a Python package for the implementation of hybrid modeling for the classification of binary data. It facilitates the integration of mechanistic knowledge on the input features into learning from data in a structured manner and proves to be a valuable classification tool when the available training data is noisy and/or limited in size. This advantage is especially prominent in medical and biomedical applications where data scarcity and noise are common challenges. The codebase, illustrations, and documentation for NoiseCut are accessible for download at https://pypi.org/project/noisecut/ . The implementation detailed in this paper corresponds to the version 0.2.1 release of the software.


Assuntos
Algoritmos , Software , Humanos , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina
2.
Philos Trans A Math Phys Eng Sci ; 381(2241): 20210409, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36463927

RESUMO

Many NP-hard combinatorial optimization (CO) problems can be cast as a quadratic unconstrained binary optimization model, which maps naturally to an Ising model. The final spin configuration in the Ising model can adiabatically arrive at a solution to a Hamiltonian, given a known set of interactions between spins. We enhance two photonic Ising machines (PIMs) and compare their performance against classical (Gurobi) and quantum (D-Wave) solvers. The temporal multiplexed coherent Ising machine (TMCIM) uses the bistable response of an electro-optic modulator to mimic the spin up and down states. We compare TMCIM performance on Max-cut problems. A spatial photonic Ising machine (SPIM) convolves the wavefront of a coherent laser beam with the pixel distribution of a spatial light modulator to adiabatically achieve a minimum energy configuration, and solve a number partitioning problem (NPP). Our computational results on Max-cut indicate that classical solvers are still a better choice, while our NPP results show that SPIM is better as the problem size increases. In both cases, connectivity in Ising hardware is crucial for performance. Our results also highlight the importance of better understanding which CO problems are most likely to benefit from which type of PIM. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

3.
Math Program ; 183(1): 283-308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863433

RESUMO

The "exact subgraph" approach was recently introduced as a hierarchical scheme to get increasingly tight semidefinite programming relaxations of several NP-hard graph optimization problems. Solving these relaxations is a computational challenge because of the potentially large number of violated subgraph constraints. We introduce a computational framework for these relaxations designed to cope with these difficulties. We suggest a partial Lagrangian dual, and exploit the fact that its evaluation decomposes into several independent subproblems. This opens the way to use the bundle method from non-smooth optimization to minimize the dual function. Finally computational experiments on the Max-Cut, stable set and coloring problem show the excellent quality of the bounds obtained with this approach.

4.
Adv Sci (Weinh) ; 11(26): e2310096, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696663

RESUMO

Combinatorial optimization (CO) has a broad range of applications in various fields, including operations research, computer science, and artificial intelligence. However, many of these problems are classified as nondeterministic polynomial-time (NP)-complete or NP-hard problems, which are known for their computational complexity and cannot be solved in polynomial time on traditional digital computers. To address this challenge, continuous-time Ising machine solvers have been developed, utilizing different physical principles to map CO problems to ground state finding. However, most Ising machine prototypes operate at speeds comparable to digital hardware and rely on binarizing node states, resulting in increased system complexity and further limiting operating speed. To tackle these issues, a novel device-algorithm co-design method is proposed for fast sub-optimal solution finding with low hardware complexity. On the device side, a piezoelectric lithium niobate (LiNbO3) microelectromechanical system (MEMS) oscillator network-based Ising machine without second-harmonic injection locking (SHIL) is devised to solve Max-cut and graph coloring problems. The LiNbO3 oscillator operates at speeds greater than 9 GHz, making it one of the fastest oscillatory Ising machines. System-wise, an innovative grouping method is used that achieves a performance guarantee of 0.878 for Max-cut and 0.658 for graph coloring problems, which is comparable to Ising machines that utilize binarization.

5.
Micromachines (Basel) ; 13(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35888832

RESUMO

With the slowdown of Moore's law, many emerging electronic devices and computing architectures have been proposed to sustain the performance advancement of computing. Among them, the Ising machine is a non-von-Neumann solver that has received wide attention in recent years. It is capable of solving intractable combinatorial optimization (CO) problems, which are difficult to be solve using conventional digital computers. In fact, many CO problems can be mapped to finding the corresponding ground states of Ising model. At present, Ising machine prototypes based on different physical principles, such as emerging memristive oscillators, have been demonstrated, among which the Ising Hamiltonian solver based on the coupled oscillator network simultaneously holds the advantages of room-temperature operation, compact footprint, low power consumption, and fast speed to solution. This paper comprehensively surveys the recent developments in this important field, including the types of oscillators, the implementation principle of the Ising model, and the solver's performance. Finally, methods to further improve the performance have also been suggested.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa