Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ecotoxicol Environ Saf ; 272: 116046, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309231

RESUMO

The potential of invertebrates in the biodegradation of plastic polymers such as polyvinyl chloride (PVC) is receiving increasing attention. The present study is aimed to identify the gut microbiome involved in this degradation in yellow mealworms, i.e., the larvae of Tenebrio molitor Linnaeus. The egested PVC polymer experienced a dramatic reduction in both number average molecular weight (Mn) and weight average molecular weight (Mw) of 99.3% and 99.6%, respectively, whereas FTIR analysis revealed chemical alterations. Mass spectrometry analysis identified two potential degradation products: phthalic acid, di(2-propylpentyl) ester and 2-Propenoic acid, tridecyl ester. Further, we used metagenomic sequencing to elucidate the response of the gut microbiome when transitioning from bran to PVC as a food source, identifying four microorganisms actively involved in PVC degradation. Additionally, metagenomic functional analysis of the gut microbiome identified 111 key gene modules that were significantly enriched. In summary, our findings suggest that yellow mealworms adapt to PVC degradation by modifying their gut microbiome both structurally and functionally.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Poliestirenos/metabolismo , Microbioma Gastrointestinal/fisiologia , Plásticos/metabolismo , Larva/metabolismo , Biodegradação Ambiental , Ésteres
2.
J Environ Manage ; 358: 120832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599089

RESUMO

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Tenebrio , Animais , Tenebrio/metabolismo , Polietileno/metabolismo , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo
3.
Environ Sci Technol ; 57(40): 15099-15111, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751481

RESUMO

It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 µm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.


Assuntos
Poliestirenos , Tenebrio , Animais , Polietileno , Tenebrio/metabolismo , Plásticos , Larva/metabolismo , Biodegradação Ambiental , Microplásticos
4.
Anim Welf ; 32: e4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487436

RESUMO

The global Insects as Food and Feed (IAFF) industry currently farms over a trillion individual insects a year and is growing rapidly. Intensive animal production systems are known to cause a range of negative affective states in livestock; given the potential scale of the IAFF industry, it is urgent to consider the welfare of the industry's insect livestock. The majority of the literature on farmed insect welfare has focused on: (i) establishing that insect welfare ought to be of concern; or (ii) extending vertebrate welfare frameworks to insects. However, there are many overlooked challenges to studying insect welfare and applying that knowledge in IAFF industry contexts. Here, we briefly review five of these challenges. We end with practical recommendations for the future study of insect welfare.

5.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050017

RESUMO

Chitin is mostly produced from crustaceans, but it is difficult to supply raw materials due to marine pollution, and the commonly used chemical chitin extraction method is not environmentally friendly. Therefore, this study aims to establish a chitin extraction process using enzymes and to develop edible insect-derived chitin as an eco-friendly new material. The response surface methodology (RSM) was used to determine the optimal conditions for enzymatic hydrolysis. The optimal conditions for enzymatic hydrolysis by RSM were determined to be the substrate concentration (7.5%), enzyme concentration (80 µL/g), and reaction time (24 h). The solubility and DDA of the mealworm chitosan were 45% and 37%, respectively, and those of the commercial chitosan were 61% and 57%, respectively. In regard to the thermodynamic properties, the exothermic peak of mealworm chitin was similar to that of commercial chitin. In the FT-IR spectrum, a band was observed in mealworm chitin corresponding to the C=O of the NHCOCH3 group at 1645 cm-1, but this band showed low-intensity C=O in the mealworm chitosan due to deacetylation. Collectively, mealworm chitosan shows almost similar physical and chemical properties to commercial chitosan. Therefore, it is shown that an eco-friendly process can be introduced into chitosan production by using enzyme-extracted mealworms for chitin/chitosan production.


Assuntos
Quitina , Quitosana , Subtilisinas , Tenebrio , Animais , Acetilação , Varredura Diferencial de Calorimetria , Quitina/química , Quitina/isolamento & purificação , Quitina/metabolismo , Quitosana/química , Quitosana/isolamento & purificação , Quitosana/metabolismo , Crustáceos/química , Insetos Comestíveis/química , Insetos Comestíveis/metabolismo , Hidrólise , Proteólise , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Subtilisinas/metabolismo , Tenebrio/química , Tenebrio/metabolismo , Termodinâmica
6.
BMC Biotechnol ; 22(1): 2, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983479

RESUMO

BACKGROUND: The excessive use of polystyrene as a packaging material has resulted in a rise in environmental pollution. Polystyrene waste has continually increased water pollution, soil pollution and the closing of landfill sites since it is durable and resistant to biodegradation. Therefore, the challenge in polystyrene disposal has caused researchers to look for urgent innovative and eco-friendly solutions for plastic degradation. The current study focuses on the isolation and identification of bacteria produced by the larvae of beetle Tenebrio molitor (yellow mealworms), that enable them to survive when fed with polystyrene foam as their sole carbon diet. MATERIALS AND METHODS: The biodegradation of polystyrene by Tenebrio molitor was investigated by breeding and rearing the mealworms in the presence and absence of polystyrene. A comparison was made between those fed with a normal diet and those fed on polystyrene. The mealworms which were fed with polystyrene were then dissected and the guts were collected to isolate and identify the bacteria in their guts. The viability and metabolic activity of the isolates were investigated. The polymerase chain reaction (PCR) followed by sequencing was used for molecular identification of the isolates. The PCR products were directly sequenced using Sanger's method and the phylogenetic tree and molecular evolutionary analyses were constructed using MEGAX software with the Neighbour Joining algorithm. The evolutionary distances were computed using the Maximum Composite Likelihood method. RESULTS: The decrease in mass of the polystyrene as feedstock confirmed that the mealworms were depending on polystyrene as their sole carbon diet. The frass egested by mealworms also confirmed the biodegradation of polystyrene as it contained very tiny residues of polystyrene. Three isolates were obtained from the mealworms guts, and all were found to be gram-negative. The sequencing results showed that the isolates were Klebsiella oxytoca ATCC 13182, Klebsiella oxytoca NBRC 102593 and Klebsiella oxytoca JCM 1665. CONCLUSION: Klebsiella oxytoca ATCC 13182, Klebsiella oxytoca NBRC 102593 and Klebsiella oxytoca JCM 1665 maybe some of the bacteria responsible for polystyrene biodegradation.


Assuntos
Tenebrio , Animais , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Larva , Filogenia , Poliestirenos/metabolismo , Tenebrio/metabolismo
7.
Environ Sci Technol ; 56(23): 17310-17320, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350780

RESUMO

Biodegradation of polystyrene (PS) in mealworms (Tenebrio molitor lavae) has been identified with commercial PS foams. However, there is currently limited understanding of the influence of molecular weight (MW) on insect-mediated plastic biodegradation and the corresponding responses of mealworms. In this study, we provided the results of PS biodegradation, gut microbiome, and metabolome by feeding mealworms with high-purity PS microplastics with a wide variety of MW. Over 24 days, mealworms (50 individuals) fed with 0.20 g of PS showed decreasing removal of 74.1 ± 1.7, 64.1 ± 1.6, 64.4 ± 4.0, 73.5 ± 0.9, 60.6 ± 2.6, and 39.7 ± 4.3% for PS polymers with respective weight-average molecular weights (Mw) of 6.70, 29.17, 88.63, 192.9, 612.2, and 1346 kDa. The mealworms degraded most PS polymers via broad depolymerization but ultrahigh-MW PS via limited-extent depolymerization. The gut microbiome was strongly associated with biodegradation, but that with low- and medium-MW PS was significantly distinct from that with ultrahigh-MW PS. Metabolomic analysis indicated that PS biodegradation reprogrammed the metabolome and caused intestinal dysbiosis depending on MW. Our findings demonstrate that mealworms alter their gut microbiome and intestinal metabolic pathways in response to in vivo biodegradation of PS polymers of various MWs.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Humanos , Animais , Tenebrio/metabolismo , Poliestirenos , Plásticos , Microbioma Gastrointestinal/fisiologia , Peso Molecular , Polímeros , Larva/metabolismo , Metaboloma
8.
Environ Sci Technol ; 56(23): 16737-16747, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36379022

RESUMO

Biodegradation of graphene materials is critical for understanding their environmental process and fate. Thus, biodegradation and mineralization of graphene oxide (GO) by an insect (yellow mealworms, Tenebrio molitor larvae) were investigated. Twenty mealworms could eat up a piece of GO film (1.5 × 1.5 cm) in 15 days. The ingested GO film underwent degradation, and the residual GO sheets were observed in the frass. Raman imaging confirmed that the residual GO (ID/IG, 1.16) was more defective than the pristine GO film (ID/IG, 0.95). 14C analysis showed that GO sheets were partially mineralized into CO2 (0.26%) and assimilated into biomass compositions (e.g., lipid and protein) (0.36%). Gut microbes and extracellular enzymes in yellow mealworms played crucial roles in GO degradation, and the predominant gut microbes for GO biodegradation were identified as Enterobacteriaceae bacteria (e.g., Escherichia-Shigella sp.). Two biodegradation products belonging to hydroxylated or carboxylated aromatic compounds were formed with the assistance of electrons and hydroxyl radicals in mealworm guts. These findings are useful for better understanding the environmental and biological fate of graphene materials.


Assuntos
Microbioma Gastrointestinal , Grafite , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Larva/metabolismo , Grafite/metabolismo , Poliestirenos
9.
Sensors (Basel) ; 20(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599780

RESUMO

The present article dealt with the fortification of plain wheat flour by the addition of grape pomace flour and mealworm larvae powder, focusing on the mineral content and selected properties of the dough. The work also analyzed the properties of one mixture in a weight combination of 80% wheat flour, 10% grape pomace, and 10% mealworm. X-ray analysis was used to measure the mineral content of calcium, iron, copper, and zinc. The properties of the individual mixture were monitored using an experimental electronic nose and a thermodynamic sensor system during the leavening. The results showed that a combination of 50% grape pomace and 50% mealworm larvae was advantageous from the viewpoint of the favorable representation of minerals. The analyzed mixture contained a high proportion of calcium (3976.7 ± 362.9 mg·kg-1), iron (209.3 ± 25.7 mg·kg-1), and copper (65.0 ± 100.1 mg·kg-1) for grape pomace as well as a high proportion of zinc (277.0 ± 21.9 mg·kg-1) for the mealworm larvae. However, this mixture showed a small change in the heat flux response when analyzed with thermodynamic sensors (lower yeast activity and worse gas formation properties resulted from the sensor characteristic with a lower response). The 100% wheat flour had the highest response, and the second highest response was recorded for a mixture of wheat flour with 10% grape pomace and 10% mealworm larvae. This combination also often had one of the highest responses when measured with an experimental electronic nose, so this combination was considered as one of the most advantageous options for processing from the mixtures mentioned in the article.

10.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752108

RESUMO

An effective analytical method was optimized for residues including chlorpyrifos-methyl, deltamethrin, fenoxanil, thiobencarb and fludioxonil in mealworms, the larval form of Tenebrio molitor. They are listed for pest control during wheat cultivation and can be found in wheat-bran feed for growing mealworms in South Korea. Analytes were extracted using acetonitrile and salt packet. Four clean-up methods ((1) MgSO4 + 25 mg PSA + 25 mg C18; (2) MgSO4 + 50 mg PSA + 50 mg C18; (3) EMR-lipidTM tube; and (4) 10 mL n-hexane) were investigated and the method (1) was selected due to its robustness. Low-temperature precipitation of fat and proteins improved the recoveries. Recoveries from the Method (1) were satisfying with 70-120% with <20% relative SD at a spiking level of 0.01 mg/kg. With the simultaneous sample preparation, fenoxanil, thiobencarb and fludioxonil were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and chlorpyrifos-methyl and deltamethrin by gas chromatography tandem mass spectrometry (GC-MS/MS). Quantification limits for LC-MS/MS and GC-MS/MS were 0.5 and 2.5 µg/L, respectively. No pesticides of interest were detected in 30 real samples collected across the nation. However, the data can be provided for establishing maximum residue limits for the pesticides in mealworms in response to the positive list system.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Tenebrio/química , Animais , Clorpirifos/análogos & derivados , Clorpirifos/análise , Clorpirifos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Imidazóis/análise , Imidazóis/isolamento & purificação , Larva/química , Larva/metabolismo , Limite de Detecção , Extração Líquido-Líquido , Nitrilas/análise , Nitrilas/isolamento & purificação , Resíduos de Praguicidas/isolamento & purificação , Piretrinas/análise , Piretrinas/isolamento & purificação , Tenebrio/crescimento & desenvolvimento , Tenebrio/metabolismo
11.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322485

RESUMO

Tenebrio molitor larvae (mealworm) is an edible insect and is considered a future food. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a novel method for simultaneous analysis of 353 target analytes was developed and validated. Various sample preparation steps including "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) extraction conditions, number of acetonitrile-hexane partitions, and dispersive-solid phase extraction (dSPE) sorbents were compared, and the optimal conditions were determined. In the established method, 5 g of homogenized mealworms was extracted with acetonitrile and treated with QuEChERS EN 15662 salts. The crude extract was subjected to three rounds of acetonitrile-hexane partitioning, and the acetonitrile layer was cleaned with C18 dSPE. The final solution was matrix-matched and injected into LC-MS/MS (2 µL). For target analytes, the limits of quantitation (LOQs) were ≤10 µg/kg, and the correlation coefficient (r2) of calibration was >0.990. In recovery tests, more than 90% of the pesticides showed an excellent recovery range (70-120%) with relative standard deviation (RSD) ≤20%. For more than 94% of pesticides, a negligible matrix effect (within ±20%) was observed. The analytical method was successfully applied and used for the detection of three urea pesticides in 4 of 11 mealworm samples.


Assuntos
Cromatografia Líquida/métodos , Resíduos de Praguicidas/análise , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Tenebrio/efeitos dos fármacos , Acetonitrilas/química , Animais , Calibragem , Insetos Comestíveis , Hexanos/química , Insetos , Larva , Limite de Detecção , Extração em Fase Sólida , Ureia/análise
12.
Trop Anim Health Prod ; 52(1): 7-16, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31392553

RESUMO

Protein sources are known to be the second largest component in the poultry sector. Traditionally, fish and soya-bean meals are known to supply very good protein; however, these are restricted in supply and more expensive than energy sources. The prices of soya-bean meal are currently high and tend to fluctuate with changes in climatic conditions and social situations in the countries where it is produced. Developing countries like South Africa have made enormous investments in soya-bean production, despite that the country still imports considerable volumes of this crop and is not self-sufficient. This then means that there is an urgent need to seek for alternative and cost-effective protein sources that can provide the same nutrients as soya-bean and fish meal for poultry production. Tenebrio molitor L. which is commonly known as yellow mealworm has a huge potential to substitute commonly used protein sources in poultry diets. Mealworms are easy to breed and do not require large area for production. Moreover, they have high nutritional value comparable to that of soya-bean and fishmeal. However, the only limiting nutrient for mealworms is calcium which can be easily supplemented in the diets. Therefore, this review sets out to explore the importance of replacing soya bean with mealworms in poultry diets. Furthermore, the life cycle of meal worms will also be discussed.


Assuntos
Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Aves Domésticas , Tenebrio , Animais , Cálcio/metabolismo , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Custos e Análise de Custo , Estágios do Ciclo de Vida , Minerais , Valor Nutritivo , Aves Domésticas/crescimento & desenvolvimento , Aves Domésticas/metabolismo , Proteínas , África do Sul , Glycine max , Tenebrio/crescimento & desenvolvimento , Tenebrio/metabolismo
13.
Appl Microbiol Biotechnol ; 102(5): 2117-2127, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29404644

RESUMO

Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.


Assuntos
Ração Animal/microbiologia , Bactérias/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Resíduos/análise , Ração Animal/análise , Ração Animal/economia , Animais , Bactérias/genética , Biodegradação Ambiental , Biomassa , Digestão , Fermentação , Resíduos/economia
14.
J Synchrotron Radiat ; 23(Pt 5): 1197-201, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577775

RESUMO

Nanomaterials are being used in medicine, manufacturing and consumer products, but their effects on organisms and the environment are not well understood because of the difficulty in detecting them. Here dual-energy X-ray K-edge subtraction was used to track two-dimensional yttrium oxide nanoparticles (which can be found in such household objects as color televisions) in adult mealworms (Tenebrio molitor). The insects ingested nanoparticle-infused feed for different time periods, up to 24 h, and the nanoparticles could then be identified at several locations in the insects' head, thorax and abdomen, mostly within the digestive tract. In time, all particles were excreted.


Assuntos
Nanopartículas Metálicas , Animais , Besouros , Larva , Tenebrio , Ítrio
15.
Bioresour Technol ; 401: 130731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663637

RESUMO

There is limited research on physiological and degradation mechanisms of yellow mealworm, a novel organic waste converter, in processing lignocellulosic wastes. This study has selected two types of lignocellulosic wastes, distillers' grains (DG) and maize straw (MS), to feed yellow mealworms. This study investigated the effects of lignocellulosic wastes on the growth, antioxidant system, microbiome, and lipidome of yellow mealworms. The relative growth of lignocellulosic waste group was not significantly different from wheat bran. The antioxidant level was elevated in DG. MS was significantly enriched in cellulose-degrading bacteria in the gut and was accompanied by disturbances in lipid metabolism. The correlation coefficients were used to construct a network connecting diet, microbiota, and lipids. The correlation analysis indicated that two sphingolipids, hexylglyceramide and dihydroglyceramide, were strongly and positively linked with the dominating species. This study provides comprehensive information on physiological and mechanism of mealworms in process of treating lignocellulosic waste.


Assuntos
Microbioma Gastrointestinal , Lignina , Metabolismo dos Lipídeos , Tenebrio , Lignina/metabolismo , Animais , Metabolismo dos Lipídeos/fisiologia , Microbioma Gastrointestinal/fisiologia , Tenebrio/metabolismo , Antioxidantes/metabolismo , Zea mays/metabolismo
16.
Foods ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338502

RESUMO

Every year, over 30% of food production is wasted. However, promoting a sustainable food supply not only fosters economic stability in agriculture and the food industry, but also safeguards precious natural resources and ensures universal food access and safety. Therefore, the aim of the study was to determine how specific growth conditions (utilizing by-products: sprouted potatoes (1), wheat bran (2), brewers' spent grain (3), and a control sample with agar-agar gels (4)) affect the larvae of yellow mealworms (Tenebrio molitor). This includes their nutritional and energy value, consumer sensory profiling, and technological parameters of processing. The results have indicated that larvae reared on the substrate with wheat bran had the highest energy value, at 708.26 kcal. In larvae, the difference in protein content was not significant when changing the rearing conditions, and ranged between 48.54 and 59.18%. The larvae contained a significant content of fibers, with the highest amount detected in samples with brewers' spent grain. The data indicate that glucose and arabinose were distinctive to larvae. Our study has also revealed a statistical difference in ash content between larvae and the substrate, with higher levels of nitrogen, copper, and zinc detected in the larvae compared to the substrate. We have found that the salt was naturally occurring in the substrates, with the brewers' spent grain sample having the highest amount, at 1.83%. However, the control sample yielded the highest ratings, achieving a score of 7.30 for general smell acceptability. These findings emphasize the potential of utilizing various industrial and farm by-products as substrates for mealworms, transforming them into a sustainable and nutrient-rich food source. This contribution adds to the broader discourse on nutritional value and resource efficiency.

17.
J Hazard Mater ; 452: 131326, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027925

RESUMO

Evidence for plastic degradation by mealworms has been reported. However, little is known about the residual plastics derived from incomplete digestion during mealworm-mediated plastic biodegradation. We herein reveal the residual plastic particles and toxicity produced during mealworm-mediated biodegradation of the three most common microplastics, i.e., polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC). All three microplastics are effectively depolymerized and biodegraded. We discover that the PVC-fed mealworms exhibit the lowest survival rate (81.3 ± 1.5%) and the highest body weight reduction (15.1 ± 1.1%) among the experimental groups by the end of the 24-day experiment. We also demonstrate that the residual PVC microplastic particles are more difficult to depurate and excrete for the mealworms compared to the residual PE and PS particles by using laser direct infrared spectrometry. The levels of oxidative stress responses, including reactive oxygen species, antioxidant enzyme activities, and lipid peroxidation, are also highest in the PVC-fed mealworms. Sub-micron microplastics and small microplastics are found in the frass of mealworms fed with PE, PS, and PVC, with the smallest particles detected at diameters of 5.0, 4.0, and 5.9 µm, respectively. Our findings provide insights into the residual microplastics and microplastic-induced stress responses in macroinvertebrates under micro(nano)plastics exposure.


Assuntos
Poliestirenos , Tenebrio , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Tenebrio/metabolismo , Polietileno/toxicidade , Polietileno/metabolismo , Larva/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Cloreto de Polivinila/toxicidade
18.
Food Bioproc Tech ; : 1-15, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36844636

RESUMO

The processing of edible insects as an alternative source of nutrition may be a key driver in the development of a sustainable food and feed system. This review will study two industrial types of insects-mealworms and locusts-and summarize evidence related to the impact of processing on their micro- and macronutritional characteristics. The focus will be on their potential use as food for human consumption as opposed to animal feed. Literature has indicated that these two insects have the potential to provide protein and fat qualities comparable to or better than traditional mammalian sources. For example, mealworms-the larval form of the yellow mealworm beetlepossess a higher fat content, while adult locusts are rich in fibers, especially chitin. However, due to the different matrix and nutrient compositions, the processing of mealworms or locusts at a commercial scale needs to be tailored to minimize nutritional loss and maximize cost efficiency. The stages of preprocessing, cooking, drying, and extraction are the most critical control points for nutritional preservation. Thermal cooking applications such as microwave technology have demonstrated promising results, but the generation of heat may contribute to a certain nutritional loss. In an industrial context, drying using freeze dry is the preferred choice due to its uniformity, but it can be costly while increasing lipid peroxidation. During the extraction of nutrients, the use of green emerging technologies such as high hydrostatic pressure, pulsed electric field, and ultrasound may provide an alternative method to enhance nutrient preservation.

19.
NanoImpact ; 29: 100454, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781073

RESUMO

Determining the potential for accumulation of Ag from Ag2S NPs as an environmentally relevant form of AgNPs in different terrestrial organisms is an essential component of a realistic risk assessment of AgNP emissions to soils. The objectives of this study were first to determine the uptake kinetics of Ag in mealworms (Tenebrio molitor) and woodlice (Porcellio scaber) exposed to Ag2S NPs in a mesocosm test, and second, to check if the obtained toxicokinetics could be predicted by single-species bioaccumulation tests. In the mesocosms, mealworms and woodlice were exposed together with plants and earthworms in soil columns spiked with 10 µg Ag g-1 dry soil as Ag2S NPs or AgNO3. The total Ag concentrations in the biota were measured after 7, 14, and 28 days of exposure. A one-compartment model was used to calculate the Ag uptake and elimination rate constants. Ag from Ag2S NPs appeared to be taken up by the mealworms with significantly different uptake rate constants in the mesocosm compared to single-species tests (K1 = 0.056 and 1.66 g dry soil g-1 dry body weight day-1, respectively), and a significant difference was found for the Ag bioaccumulation factor (BAFk = 0.79 and 0.15 g dry soil g-1 dry body weight, respectively). Woodlice did not accumulate Ag from Ag2S NPs in both tests, but uptake from AgNO3 was significantly slower in mesocosm than in single-species tests (K1 = 0.037 and 0.26 g dry soil g-1 dry body weight day-1, respectively). Our results are of high significance because they show that single-species tests may not be a good predictor for the Ag uptake in mealworms and woodlice in exposure systems having greater levels of biological complexity. Nevertheless, single-species tests could be used as a fast screening approach to assess the potential of a substance to accumulate in biota before more complex tests are conducted.


Assuntos
Isópodes , Nanopartículas Metálicas , Tenebrio , Animais , Toxicocinética , Prata/análise , Solo
20.
Foods ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38002150

RESUMO

Since the human population is continuously growing, sufficient food with low environmental impact is required. Especially, the challenge of providing proteins will deepen and insects can contribute to a more sustainable and efficient source of protein for human consumption. Tenebrio molitor larvae are highly nutritious and rearing mealworms is more environmentally friendly compared to the production of traditional livestock meat. To use T. molitor as a more sustainable alternative to conventional proteins, it is essential to apply diets from a local and sustainable source. Therefore, the objective of this study was to find local by-products or leftovers which can be used in mass production of larvae as a main substrate. Feeding trials investigating twenty-nine different substrates were conducted to evaluate larval growth performance and adult reproduction by determining development times, survival rates, biomass, and fecundity. Several suitable by-products were identified that can be used in high quantities as single component diet for T. molitor rearing, revealing a high survival rate, short development time, high mean total biomass, and successful breeding. The most successful substrate-malt residual pellets-was found to be an alternative to the most used substrate, wheat bran. Furthermore, corn germ meal, sweet chestnuts, bread remains, soybeans, sweet potatoes, and wheat germs have been discovered to be suitable diets for T. molitor. Moreover, the findings of this study contribute towards using several substrates as supplements.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa