Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Small ; 20(38): e2403699, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38773886

RESUMO

The surging demand for sustainable energy solutions and adaptable electronic devices has led to the exploration of alternative and advanced power sources. Triboelectric Nanogenerators (TENGs) stand out as a promising technology for efficient energy harvesting, but research on fully flexible and environmental friendly TENGs still remain limited. In this study, an innovative approach is introduced utilizing an ionic-solution modified conductive hydrogel embedded with piezoelectric sodium niobate nanowires-based Triboelectric Nanogenerator (NW-TENG), offering intrinsic advantages to healthcare and wearable devices. The synthesized NW-TENG, with a 12.5 cm2 surface area, achieves peak output performance, producing ≈840 V of voltage and 2.3 µC of charge transfer, respectively. The rectified energy powers up 30 LEDs and a stopwatch; while the NW-TENG efficiently charges capacitors from 1µF to 100 µF, reaching 1 V within 4 to 65 s at 6 Hz. Integration with prototype carbon monoxide (CO) gas sensor transform the device into a self-powered gas sensory technology. This study provides a comprehensive understanding of nanowire effects on TENG performance, offering insights for designing highly flexible and environmentally friendly TENGs, and extending applications to portable self-powered gas sensors and wearable devices.

2.
Small ; : e2403218, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963069

RESUMO

In recent years, the implementation of energy-harvesting technology in medical equipment has attracted significant interest owing to its potential for self-powered and smart healthcare systems. Herein, the integration of a triboelectric nanogenerator (TENG) is proposed into an inhaler for energy-harvesting and smart inhalation monitoring. For this initially, barium sodium niobium oxide (Ba2NaNb5O15) microparticles (BNNO MPs) are synthesized via a facile solid-state synthesis process. The BNNO MPs with ferroelectricity and high dielectric constant are incorporated into polydimethylsiloxane (PDMS) polymer to make BNNO/PDMS composite films (CFs) for TENG fabrication. The fabricated TENG is operated in a contact-separation mode, and its electrical output performance is compared to establish the optimal BNNO MPs concentration. Furthermore, multi-wall carbon nanotubes (MWCNTs), a conductive filler material, are used to enhance the electrical conductivity of the CFs, thereby improving the electrical output performance of the TENG. The robustness/durability of the proposed BNNO-MWCNTs/PDMS CF-based TENG are investigated. The proposed TENG device is demonstrated to harvest electrical energy from mechanical motions via regular human activities and power portable electronics. The TENG is integrated into the inhaler casing to count the number of sprays remaining in the canister, send the notification to a smartphone via Bluetooth, and harvest energy.

3.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392380

RESUMO

This paper presents a continuation of the Chambadal model optimization of the irreversible Carnot engine. We retrieved the results presented in the Special Issue "Carnot Cycle and Heat Engine Fundamentals and Applications II" and enriched them with new contributions that allowed comparing two points of view: (1) the now classical one, centered on entropy production in the four processes of the cycle, which introduces the action of entropy production, with several sequential optimizations; (2) the new one that is relative to an energy degradation approach. The same démarche of sequential optimization was used, but the results were slightly different. We estimate that the second approach is more representative of physics by emphasizing the energy conservation and the existence on an upper and a lower bound in the mechanical energy and power output of the engine.

4.
J Exp Biol ; 226(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36866683

RESUMO

Despite the high mechanical demands associated with climbing, the ability to ascend vertically has evolved independently in most major animal lineages. However, little is known about the kinetics, mechanical energy profiles or spatiotemporal gait characteristics of this locomotor mode. In this study, we explored the dynamics of horizontal locomotion and vertical climbing on both flat substrates and narrow poles in five Australian green tree frogs (Ranoidea caerulea). Vertical climbing is associated with slow, deliberate movements (i.e. reduced speed and stride frequency and increased duty factors) and propulsive fore-aft impulses in both the forelimb and hindlimb. By comparison, horizontal walking was characterized by a braking forelimb and a propulsive hindlimb. In the normal plane, tree frogs mirrored other taxa in exhibiting a net pulling forelimb and a net pushing hindlimb during vertical climbing. In terms of mechanical energy, tree frogs matched theoretical predictions of climbing dynamics (i.e. the total mechanical energetic cost of vertical climbing was predominantly driven by potential energy, with negligible kinetic contributions). Utilizing power as a means of estimating efficiency, we also demonstrate that Australian green tree frogs show total mechanical power costs only slightly above the minimum mechanical power necessary to climb, highlighting their highly effective locomotor mechanics. This study provides new data on climbing dynamics in a slow-moving arboreal tetrapod and raises new testable hypotheses about how natural selection can act upon a locomotor behavior that is notably constrained by external physical forces.


Assuntos
Locomoção , Caminhada , Animais , Austrália , Marcha , Membro Posterior , Membro Anterior , Anuros , Fenômenos Biomecânicos
5.
Nanotechnology ; 34(11)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36595314

RESUMO

Semiconducting piezoelectric nanowires (NWs) are promising candidates to develop highly efficient mechanical energy transducers made of biocompatible and non-critical materials. The increasing interest in mechanical energy harvesting makes the investigation of the competition between piezoelectricity, free carrier screening and depletion in semiconducting NWs essential. To date, this topic has been scarcely investigated because of the experimental challenges raised by the characterization of the direct piezoelectric effect in these nanostructures. Here we get rid of these limitations using the piezoresponse force microscopy technique in DataCube mode and measuring the effective piezoelectric coefficient through the converse piezoelectric effect. We demonstrate a sharp increase in the effective piezoelectric coefficient of vertically aligned ZnO NWs as their radius decreases. We also present a numerical model which quantitatively explains this behavior by taking into account both the dopants and the surface traps. These results have a strong impact on the characterization and optimization of mechanical energy transducers based on vertically aligned semiconducting NWs.

6.
Scand J Med Sci Sports ; 33(6): 943-953, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36756770

RESUMO

The altitude differential of the specific mechanical energy, diff e mech , is used to evaluate skiing performance. It is defined as the negative differential between the skier's total specific mechanical energy ( e mech ) and the altitude of the skier's center of mass (COM). Till now, e mech was obtained upon a mass-point (MP) model of the skier's COM, which neither considered the segmental energies of their relative movements to the COM, nor their rotational kinetic energies. The aims of the study were therefore: (a) to examine the deviations in diff e mech between the MP and a more complex linked segment (LS) skier model consisting of 15 rigid bodies, which encountered the aforementioned defectiveness, (b) to compare the energy fluctuations of the two skier models, and (c) to investigate the influence of the gate setup on (a) and (b) in giant slalom. Three-dimensional whole-body kinematics of nine skiers was measured using a global navigation satellite system and an inertial motion capture system while skiing on a predefined course divided into a turny and open gate setup. Mechanical energies including their altitude differentials were calculated for the LS and MP models. There were no significant differences in e mech and diff e mech ski turn averages, as in individual data points, between both skier models for both analyzed gate setups. The energies additionally considered by the LS model presented a negligible part regardless of the gate setup. In conclusion, the MP skier model is sufficiently accurate for the evaluation of the skiing performance with diff e mech .


Assuntos
Esqui , Humanos , Fenômenos Biomecânicos , Movimento
7.
Small ; 18(20): e2200822, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35419981

RESUMO

Triboelectric nanogenerators (TENGs) are one of the most trending energy harvesting devices because of their efficient and simple mechanism in harvesting mechanical energy from the environment into electricity. Herein, ferroelectric and dielectric bismuth tungstate (Bi2 WO6 (BWO)) with a marigold flower-like structure is prepared via a hydrothermal method, which is embedded in poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), forming a PVDF-HFP/BWO composite polymer film (CPF) to fabricate TENGs. Generally, the ferroelectric materials exhibit a large piezoelectric coefficient, high electrostatic dipole moment, and high dielectric constant. The prepared PVDF-HFP/BWO CPF reveals a high polar crystalline ß-phase which leads to enhanced piezoelectric and ferroelectric properties of the CPF, thus resulting in the increased electrical performance of the fabricated TENG. The electrical output performance of the proposed TENG is systematically investigated by varying the amount of BWO material embedded in the PVDF-HFP polymer. The fabricated PVDF-HFP/2.5 wt% BWO CPF-based TENG device exhibits the highest electrical output performance. Additionally, the robust test of the TENG device is conducted to investigate the electrical performance for long-term durability and mechanical stability. Finally, the proposed TENG is operated as a self-powered sensor, harvesting mechanical energy from daily life human activities, and powering various low-power portable electronics.


Assuntos
Bismuto , Nanotecnologia , Humanos , Nanotecnologia/métodos , Polímeros/química , Compostos de Tungstênio , Compostos de Vinila
8.
Small ; 18(38): e2203887, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35971189

RESUMO

A compact, stable, sustainable, and high-energy density power supply system is crucial for the engineering deployment of mobile electromechanical devices/systems either at the small- or large-scale. This work proposes a spiral-based mechanical energy storage scheme utilizing the newly synthesized 2D diamane. Atomistic simulations show that diamane spiral can achieve a high theoretical gravimetric energy density of about 564 Wh kg-1 , about 14 500 times the steel spring. The interlayer friction between diamane is found to cause a strong stick-slip effect that results in local stress/strain concentration. As such, the energy storage capacity of the diamane spiral can be tuned by suppressing the influence from the interlayer friction. Simulations affirm that higher gravimetric energy density can be achieved by reducing the turn number or adopting a low friction contact pair. The fundamental principles that dominate the energy storage capacity of the spiral spring are theoretically analyzed, respectively. The obtained insights suggest that the 2D vdW solids can be promising candidates to construct spiral structures with a high gravimetric energy density. This work should be beneficial for the design of reliable, stable, and sustainable nanoscale mechanical energy storage schemes that can be used as an alternative low-carbon footage energy supplier for novel micro-/nanoscale devices or systems.

9.
Chem Rec ; 22(9): e202200067, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686889

RESUMO

Being cognizant of modern electronic devices, the scientists are continuing to investigate renewable green-energy resources for a decade. Amid different energy harvesting systems, the triboelectric nanogenerators (TENGs) have been found to be the most promising mechanical harvesting technology and have drawn attention to generate electrical energy. Thanks to its instant output power, choice to opt for wide-ranging materials, low maintenance cost, easy fabrication process and environmentally friendly nature. Due to numerous working modes of TENGs, it is dedicated to desired application at ambient conditions. In this review, an advance correlation of TENGs have been explained based on the variety of nanostructures, including 0D, 1D, 2D, 3D, metal organic frameworks (MOFs), coordination polymers (CPs), covalent organic frameworks (COFs), and perovskite materials. Moreover, an overview of previous and current perspectives of various nanomaterials, synthesis, fabrication and their applications in potential fields have been discussed in detail.

10.
Scand J Med Sci Sports ; 32(2): 290-297, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34780079

RESUMO

In healthy adults, Nordic walking (NW) is known to increase the external mechanical energy fluctuations, though the external work is unaltered due to an improved pendulum-like recovery in comparison with free walking (FW). We aimed to compare mechanical, pendulum-like, and spatiotemporal parameters of gait at different speeds with and without NW poles in people with Parkinson's disease and healthy controls. The study included 11 people (aged 65.6 ± 7.0 years) with idiopathic Parkinson's disease, scoring between 1 and 1.5 on the Hoehn and Yahr scale (H&Y), and nine healthy controls (aged 70.0 ± 5.6 years). All the people were experienced Nordic walkers. Walking tests were performed at 1.8 km h-1 and 4.7 km h-1 , on eight 3D force platforms on a walkway. We found greater pendulum-like energy recovery (p < 0.05) in the Parkinson group during NW than in FW, while external mechanical work remained similar (p > 0.05). People with Parkinson's disease showed a major increase in vertical and forward energy fluctuations using poles than in healthy controls. In addition, the Parkinson group showed increased stride frequency and reduced stride length compared to controls in the NW and FW conditions. Our findings partly justify the lower walking economy in Parkinson's disease due to reduced pendulum-like mechanism at commonly used speeds. NW alters gait mechanics similarly in Parkinson group and healthy control, increasing the total mechanical work. Therefore, NW can be a compelling strategy for rehabilitation because of its potential for improving functional mobility, increasing pendulum-like mechanism in Parkinson's disease.


Assuntos
Doença de Parkinson , Adulto , Marcha , Humanos , Caminhada Nórdica , Caminhada
11.
J Neuroeng Rehabil ; 19(1): 29, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35300696

RESUMO

BACKGROUND: Energy cost minimization has been widely accepted to regulate gait. Optimization principles have been frequently used to explain how individuals adapt their gait pattern. However, there have been rare attempts to account for the role of variability in this optimization process. Motor redundancy can enable individuals to perform tasks reliably while achieving energy optimization. However, we do not know how the non-goal-equivalent and goal-equivalent variability is regulated. In this study, we investigated how unilateral transfemoral amputees regulate step and stride variability based on the task to achieve energy economy. METHODS: Nine individuals with unilateral transfemoral amputation walked on a treadmill at speeds of 0.6, 0.8, 1.0, 1.2 and 1.4 m/s using their prescribed passive prostheses. We calculated the step-to-step and stride-to-stride variability and applied goal equivalent manifold (GEM) based control to decompose goal-equivalent and non-goal-equivalent manifold. To quantify the energy economy, the energy recovery rate (R) was calculated based on potential energy and kinetic energy. Comparisons were made between GEM variabilities and commonly used standard deviation measurements. A linear regression model was used to investigate the trade-off between R and GEM variabilities. RESULTS: Our analysis shows greater variability along the goal-equivalent manifold compared to the non-goal-equivalent manifold (p < 0.001). Moreover, our analysis shows lower energy recovery rate for amputee gait compared to nonamputee gait (at least 20% less at faster walking speed). We found a negative relationship between energy recovery rate and non-goal-equivalent variability. Compared to the standard deviation measurements, the variability decomposed using GEM reflected the preferred walking speed and the limitation of the passive prosthetic device. CONCLUSION: Individuals with amputation cleverly leverage task redundancy, regulating step and stride variability to the GEM. This result suggests that task redundancy enables unilateral amputees to benefit from motor variability in terms of energy economy. The differences observed between prosthetic step and intact step support the development of prosthetic limbs capable of enhancing positive work during the double support phase and of powered prosthesis controllers that allow for variability along the task space while minimizing variability that interferes with the task goal. This study provides a different perspective on amputee gait analysis and challenges the field to think differently about the role of variability.


Assuntos
Amputados , Membros Artificiais , Marcha/fisiologia , Objetivos , Humanos , Caminhada/fisiologia
12.
Sci Technol Adv Mater ; 23(1): 161-168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185391

RESUMO

Due to its abundance, mechanical energy is a promising ambient energy source. Triboelectric nanogenerators (TENGs) represent an effective mechanical energy harvesting method based on the use of contact electrification. The existing liquid-based TENGs can operate robustly without surface damage; however, the output of these TENGs is considerably smaller than that of solid-based TENGs. Notably, liquid-based TENGs in which the liquid directly contacts the conductive material can produce an electrical current of more than few mA. However, the liquid reservoir must have an adequate volume, and sufficient space must be provided for the liquid to move for generating the electrical output. To ensure a compact and lightweight design and produce electrical output in the low input frequency range, we introduce a mobile stick-type water-based TENG (MSW-TENG). The proposed MSW-TENG can generate an open-circuit voltage and closed-circuit current of up to 710 V and 2.9 mA, respectively, and be utilized as self-powered safety device. The findings of this study can promote the implementation of TENGs in everyday applications.

13.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560001

RESUMO

Mechanical energy harvesters including piezoelectric nanogenerators, electromagnetic generators and triboelectric nanogenerators (TENG) used to convert the mechanical motion into electricity are more and more important in the recent decades. Specifically, the fiber-based TENG (FTENG) has gained considerable favors due to its flexibility, light weight, and high environmental tolerance for the wearable devices. The traditional FTENGs made of Teflon result in better performance but are not suitable for long-term wear in person. Here, we propose a novel FTENG using a flexible micro-needle-structured polydimethylsiloxane (MN-PDMS) together with the comfortable commercially available 2D-polyester fibers, and electroless nickel-plated cotton cloth of which two are widely used in human daily life. The MN-PDMS is formed by a laser engraved mold for improving its output performance of FTENG compared to the flat-PDMS. The open-circuit voltage (Voc) and the short-circuit current (Isc) of MN-FTENG increased to 73.6 V and 36 µA, respectively, which are 34% and 37% higher than the flat-FTENG. In terms of power, the performance of MN-FTENG reaches 1.296 mW which is 89% higher than that of flat-TENG and it can also light up 90 LEDs. For application, human motion at the joints can be detected and collected with various signals that are used for the human-machine interface (HMI) through the cooperation of components for the Internet of Things (IoT). It can light up the LED bulb through MN-FTENG to potentially develop IoT HMI systems for human motion control of robot in the future.


Assuntos
Internet das Coisas , Raízes de Plantas , Humanos , Placas Ósseas , Eletricidade , Sistemas Homem-Máquina
14.
Small ; 17(37): e2101333, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378317

RESUMO

With the popularity of portable and miniaturized electronic devices in people's live, flexible piezoelectric nanogenerators (PENG) have become a research hotspot for harvesting energy from the living environment to power small-scale electronic equipment and systems because of its stability. For further enhancing output performance of PENG, chemical modification and structural design for piezoelectric fillers are effective ways. Thus, the 3D porous hetero-structure fillers of BCZT@Ag are prepared by freeze-drying method and subsequent chemical seeding reduction. The silicone rubber as matrix is filled into the micro-voids of fillers to prepare specialized composite. The charge transport mechanism and stress transfer efficiency in PENG can be effectively improved through specialized design which is proven by experimental results and multi-physics simulations. The improved PENG exhibit a significantly enhanced output of 38.6 V and 5.85 µA, which is 3.3 and 3.5 times higher than those of PENG without specific design. The prepared PENG can effectively harvest biomechanical energy through walk and joint bending of human body. Moreover, the PENG can be used as a trigger to remotely control wireless collision alarm system, which can acquire rapid response and shows great potential application in Internet of Things.


Assuntos
Fontes de Energia Elétrica , Eletrônica , Humanos , Porosidade
15.
Exp Physiol ; 106(9): 1897-1908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197674

RESUMO

NEW FINDINGS: What is the topic of this review? This narrative review explores past and recent findings on the mechanical determinants of energy cost during human locomotion, obtained by using a mechanical approach based on König's theorem (Fenn's approach). What advances does it highlight? Developments in analytical methods and their applications allow a better understanding of the mechanical-bioenergetic interaction. Recent advances include the determination of 'frictional' internal work; the association between tendon work and apparent efficiency; a better understanding of the role of energy recovery and internal work in pathological gait (amputees, stroke and obesity); and a comprehensive analysis of human locomotion in (simulated) low gravity conditions. ABSTRACT: During locomotion, muscles use metabolic energy to produce mechanical work (in a more or less efficient way), and energetics and mechanics can be considered as two sides of the same coin, the latter being investigated to understand the former. A mechanical approach based on König's theorem (Fenn's approach) has proved to be a useful tool to elucidate the determinants of the energy cost of locomotion (e.g., the pendulum-like model of walking and the bouncing model of running) and has resulted in many advances in this field. During the past 60 years, this approach has been refined and applied to explore the determinants of energy cost and efficiency in a variety of conditions (e.g., low gravity, unsteady speed). This narrative review aims to summarize current knowledge of the role that mechanical work has played in our understanding of energy cost to date, and to underline how recent developments in analytical methods and their applications in specific locomotion modalities (on a gradient, at low gravity and in unsteady conditions) and in pathological gaits (asymmetric gait pathologies, obese subjects and in the elderly) could continue to push this understanding further. The recent in vivo quantification of new aspects that should be included in the assessment of mechanical work (e.g., frictional internal work and elastic contribution) deserves future research that would improve our knowledge of the mechanical-bioenergetic interaction during human locomotion, as well as in sport science and space exploration.


Assuntos
Corrida , Caminhada , Idoso , Fenômenos Biomecânicos , Metabolismo Energético/fisiologia , Marcha/fisiologia , Humanos , Locomoção/fisiologia , Corrida/fisiologia , Caminhada/fisiologia
16.
J Exp Biol ; 224(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34495332

RESUMO

The importance of a proximal-to-distal (P-D) sequential motion in baseball pitching is generally accepted; however, the mechanisms behind this sequential motion and motor control theories that explain which factor transfers mechanical energy between the trunk and arm segments are not completely understood. This study aimed to identify the energy distribution mechanisms among the segments and determine the effect of the P-D sequence on the mechanical efficiency of the throwing movement, focusing on the time-varying motor control. The throwing motions of 16 male collegiate baseball pitchers were measured by a motion capture system. An induced power analysis was used to decompose the system mechanical energy into its muscular and interactive torque-dependent components. The results showed that the P-D sequential energy flow during the movement was mainly attributed to three different joint controls of the energy generation and muscular torque- and centrifugal force-induced energy transfer. The trunk muscular torques provided the primary energy sources of the system mechanical energy, and the shoulder and elbow joints played the roles of the energy-transfer effect. The mechanical energy expenditure on the throwing hand and ball accounted for 72.7% of the total muscle work generated by the trunk and arm joints (329.2 J). In conclusion, the P-D sequence of the throwing motion is an effective way to utilize the proximal joints as the energy source and reduce muscular work production of the distal joints. This movement control assists in efficient throwing, and is consistent with the theory of the leading joint hypothesis.


Assuntos
Beisebol , Articulação do Cotovelo , Articulação do Ombro , Fenômenos Biomecânicos , Humanos , Masculino , Rotação , Ombro , Torque , Tronco
17.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34521075

RESUMO

Clean and efficient energy conversion systems can overcome the depletion of the fossil fuel and meet the increasing demand of the energy. Ordered nanostructures arrays convert energy more efficiently than their disordered counterparts, by virtue of their structural merits. Among various fabrication methods of these ordered nanostructures arrays, anodic aluminum oxide (AAO) template-directed fabrication have drawn increasing attention due to its low cost, high throughput, flexibility and high structural controllability. This article reviews the application of ordered nanostructures arrays fabricated by AAO template-directed methods in mechanical energy, solar energy, electrical energy and chemical energy conversions in four sections. In each section, the corresponding advantages of these ordered nanostructures arrays in the energy conversion system are analysed, and the limitation of the to-date research is evaluated. Finally, the future directions of the ordered nanostructures arrays fabricated by AAO template-directed methods (the promising method to explore new growth mechanisms of AAO, green fabrication based on reusable AAO templates, new potential energy conversion application) are discussed.

18.
Eur J Appl Physiol ; 121(4): 1073-1085, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33439307

RESUMO

PURPOSE: We sought to identify the developing maturity of walking and running in young children. We assessed gait patterns for the presence of flight and double support phases complemented by mechanical energetics. The corresponding classification outcomes were contrasted via a shotgun approach involving several potentially informative gait characteristics. A subsequent clustering turned out very effective to classify the degree of gait maturity. METHODS: Participants (22 typically developing children aged 2-9 years and 7 young, healthy adults) walked/ran on a treadmill at comfortable speeds. We determined double support and flight phases and the relationship between potential and kinetic energy oscillations of the center-of-mass. Based on the literature, we further incorporated a total of 93 gait characteristics (including the above-mentioned ones) and employed multivariate statistics comprising principal component analysis for data compression and hierarchical clustering for classification. RESULTS: While the ability to run including a flight phase increased with age, the flight phase did not reach 20% of the gait cycle. It seems that children use a walk-run-strategy when learning to run. Yet, the correlation strength between potential and kinetic energies saturated and so did the amount of recovered mechanical energy. Clustering the set of gait characteristics allowed for classifying gait in more detail. This defines a metric for maturity in terms of deviations from adult gait, which disagrees with chronological age. CONCLUSIONS: The degree of gait maturity estimated statistically using various gait characteristics does not always relate directly to the chronological age of the child.


Assuntos
Desenvolvimento Infantil , Análise da Marcha , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Corrida/fisiologia , Caminhada/fisiologia
19.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671656

RESUMO

Structural health monitoring is of great significance to ensure the safety of marine pipes, while powering the required monitoring sensors remains a problem because the ocean environment is not amenable to the traditional ways of providing an external power supply. However, mechanical energy due to the vortex-induced vibration of pipelines may be harvested to power those sensors, which is a convenient, economic and environmentally friendly way. We here exploit a contact-separation mode triboelectric nanogenerator (TENG) to create an efficient energy harvester to transform the mechanical energy of vibrating pipes into electrical energy. The TENG device is composed of a tribo-pair of dielectric material films that is connected to a mass-spring base to guarantee the contact-separation motions of the tribo-pair. Experimental tests are conducted to demonstrate the output performance and long-term durability of the TENG device by attaching it to a sample pipe. A theoretical model for the energy harvesting system is developed for predicting the electrical output performance of the device. It is established that the normalized output power depends only on two compound variables with all typical factors taken into consideration simultaneously. The simple scale law is useful to reveal the underlying mechanism of the device and can guideline the optimization of the device based on multi-parameters analyses. The results here may provide references for designing contact-mode TENG energy harvesting devices based on the vibration of marine pipes and similar structures.

20.
J Anim Physiol Anim Nutr (Berl) ; 105 Suppl 1: 76-90, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34622485

RESUMO

The influence of specific thermal energy (STE) applications on extruder preconditioner was evaluated in a dry food for cats. In the first study, six STE applications were tested with mass temperatures of 45°C, 55°C, 65°C, 75°C, 85°C and 95°C. The extrusion parameters, starch gelatinization and kibble formation were evaluated. Diets were given to cats to evaluate digestibility, faecal characteristics and palatability. In the second experiment, three treatments were compared: low STE-a preconditioner temperature of 45°C (L STE); high STE-a preconditioner temperature of 95°C (H STE); high STE (preconditioner temperature of 95°C) combined with an increase in the mass flow rate to obtain a motor amperage similar to that of the L STE (H STEflow ). Data were analysed by polynomial contrasts (Experiment 1) or Tukey's test (Experiment 2; p < 0.05). An increase in STE reduced motor amperage, mass pressure and specific mechanical energy (SME) implementation (p < 0.001) and increased total specific energy (TSE) and mass temperature (p < 0.01). The increase in STE induced greater kibble expansion and starch gelatinization (p < 0.001). No changes in apparent nutrient digestibility or faeces characteristics were observed (p > 0.05). Lower STE and starch gelatinization induced higher butyrate and total volatile fatty acid (VFA) contents in faeces (p < 0.01). Cats showed greatest preference for the formulation with the highest STE (p < 0.01). In the second experiment, when the motor amperage was increased in the H STEflow treatment to a value similar to that of the L STE, the mass flow rate increased 40%, and the electric energy consumption remained unchanged (p < 0.001), with gains observed for efficiency and cost. In conclusion, STE application is important for sufficient TSE implementation, enhancing kibble expansion, starch gelatinization, cat preferences for food, extruder productivity and reducing SME application. Foods with lower starch gelatinization lead to increased VFA in faeces, with possible implications for gut health.


Assuntos
Ração Animal , Digestão , Ração Animal/análise , Animais , Gatos , Dieta/veterinária , Fezes , Amido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa