Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(12): e2118573119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290119

RESUMO

Although catenanes comprising two ring-shaped components can be made in large quantities by templation, the preparation of three-dimensional (3D) catenanes with cage-shaped components is still in its infancy. Here, we report the design and syntheses of two 3D catenanes by a sequence of SN2 reactions in one pot. The resulting triply mechanically interlocked molecules were fully characterized in both the solution and solid states. Mechanistic studies have revealed that a suit[3]ane, which contains a threefold symmetric cage component as the suit and a tribromide component as the body, is formed at elevated temperatures. This suit[3]ane was identified as the key reactive intermediate for the selective formation of the two 3D catenanes which do not represent thermodynamic minima. We foresee a future in which this particular synthetic strategy guides the rational design and production of mechanically interlocked molecules under kinetic control.


Assuntos
Catenanos , Rotaxanos , Catenanos/química , Cinética , Rotaxanos/química
2.
Chemistry ; 30(19): e202304025, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168751

RESUMO

'Impossible' rotaxanes, which are constituted by interlocked components without obvious binding motifs, have attracted the interest of the mechanically interlocked molecules (MIMs) community. Within the synthetic efforts reported in the last decades towards the preparation of MIMs, some innovative protocols for accessing 'impossible' rotaxanes have been developed. This short review highlights different selected synthetic examples of 'impossible' rotaxanes, as well as suggests some future directions of this research area.

3.
Chemistry ; 30(30): e202400952, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38536767

RESUMO

The first example of a [2]rotaxane shuttle capable of selective optical sensing of chloride anions over other halides is reported. The rotaxane was synthesised via a chloride ion template-directed cyclisation of an isophthalamide macrocycle around a multi-station axle containing peripheral naphthalene diimide (NDI) stations and a halogen bonding (XB) bis(iodotriazole) based station. Proton NMR studies indicate the macrocycle resides preferentially at the NDI stations in the free rotaxane, where it is stabilised by aromatic donor-acceptor charge transfer interactions between the axle NDI and macrocycle hydroquinone moieties. Addition of chloride ions in an aqueous-acetone solvent mixture induces macrocycle translocation to the XB anion binding station to facilitate the formation of convergent XB⋅⋅⋅Cl- and hydrogen bonding HB⋅⋅⋅Cl- interactions, which is accompanied by a reduction of the charge-transfer absorption band. Importantly, little to no optical response was induced by addition of bromide or iodide to the rotaxane, indicative of the size discriminative steric inaccessibility of the interlocked cavity to the larger halides, demonstrating the potential of using the mechanical bond effect as a potent strategy and tool in chloride-selective chemo-sensing applications in aqueous containing solvent environments.

4.
Chemistry ; 30(13): e202303394, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116992

RESUMO

The development of efficient and selective organic synthetic approaches for complex molecules has garnered significant attention due to the need for precise control over molecular structures and functions. Rotaxanes, a type of mechanically interlocked molecules (MIMs), have shown promising applications in various fields including sensing, catalysis, and material science. However, the highly selective synthesis of oligo[n]rotaxanes (mostly n≥3) through controlling host-guest complexation and supramolecular threading assembly process still remains an ongoing challenge. In particular, the utilization of two-dimensional (2D) macrocycles with structural shape-persistency for the synthesis of oligo[n]rotaxanes is rare. In this concept, research on cooperatively threaded host-guest complexation with hydrogen-bonded (H-bonded) aramide macrocycles and selective synthetic protocols of oligo[n]rotaxanes has been summarized. The high efficiency and selectivity in synthesis are ascribed to the synergistic interplay of multiple non-covalent bonding interactions such as hydrogen bonding and intermolecular π-π stacking of macrocycles within the unique supramolecular structure of threaded host-guest complexes. This review focuses on the latest progress in the concepts, synthesis, and properties of H-bonded aramide macrocycle-based oligorotaxanes, and presents an in-depth outlook on challenges in this emerging field.

5.
Angew Chem Int Ed Engl ; 63(20): e202401823, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38386798

RESUMO

Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments-[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles-may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal-ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu-catalyzed azide-alkyne cycloaddition (AT-CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2'-bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT-CuAAC reaction to provide [2]rotaxanes in near-quantitative yield, which can then be converted into the fully π-conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where Tz denotes a 1,2,3-triazole moiety replacing one phenylene ring in the [n]CPP backbone).

6.
Angew Chem Int Ed Engl ; 63(12): e202319502, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38279667

RESUMO

Aiming at the construction of novel stimuli-responsive fluorescent system with precisely tunable emissions, the typical 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) luminogen with attractive vibration-induced emission (VIE) behavior has been introduced into [2]rotaxane as a stopper. Taking advantage of their unique dual stimuli-responsiveness towards solvent and anion, the resultant [2]rotaxanes reveal both tunable VIE and switchable circularly polarized luminescence (CPL). Attributed to the formation of mechanical bonds, DPAC-functionalized [2]rotaxanes display interesting VIE behaviors including white-light emission upon the addition of viscous solvent, as evaluated in detail by femtosecond transient absorption (TA) spectra. In addition, ascribed to the regulation of chirality information transmission through anion-induced motions of chiral wheel, the resolved chiral [2]rotaxanes reveal unique switchable CPL upon the addition of anion, leading to significant increase in the dissymmetry factors (glum ) values with excellent reversibility. Interestingly, upon doping the chiral [2]rotaxanes in stretchable polymer, the blend films reveal remarkable emission change from white light to light blue with significant 6.5-fold increase in glum values up to -0.035 under external tensile stresses. This work provides not only a new design strategy for developing molecular systems with fluorescent tunability but also a novel platform for the construction of smart chiral luminescent materials for practical use.

7.
Angew Chem Int Ed Engl ; 63(34): e202407626, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38837637

RESUMO

Poly-[n]-catenanes (PCs) self-assembled of three-dimensional (3D) metal organic cages (MOCs) (hereafter referred to as PCs-MOCs) are a relatively new class of mechanically interlocked molecules (MIMs) that combine the properties of MOCs and polymers. The synthesis of PCs-MOCs is challenging because of the difficulties associated with interlocking MOCs, the occurrence of multiple weak supramolecular electrostatic interactions between cages, and the importance of solvent templating effects. The high density of mechanical bonds interlocking the MOCs endows the MOCs with mechanical and physical properties such as enhanced stability, responsive dynamic behavior and low solubility, which can unlock new functional properties. In this Minireview, we highlight the benefit of interlocking MOCs in the formation of PCs-MOCs structures as well as the synthetic approaches exploited in their preparation, from thermodynamic to kinetic methods, both in the solution and solid-states. Examples of PCs-MOCs self-assembled from various types of nanosized cages (i.e., tetrahedral, trigonal prismatic, octahedral and icosahedral) are described in this article, providing an overview of the research carried out in this area. The focus is on the structure-property relationship with examples of functional applications such as electron conductivity, X-ray attenuation, gas adsorption and molecular sensing. We believe that the structural and functional aspects of the reviewed PCs-MOCs will attract chemists in this research field with great potential as new functional materials in nanotechnological disciplines such as gas adsorption, sensing and photophysical properties such as X-ray attenuation or electron conductivity.

8.
Chemistry ; 29(41): e202203905, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36847391

RESUMO

Ions appear as active components in diverse materials. Here, the bonding energy between mechanically interlocked molecules (MIMs) or their acyclic/cyclic molecular derivatives and i) Cl- and Br- ions and/or ii) Na+ and K+ ions, have been investigated. The chemical environment provided by MIMs is less preferably to recognize ionic species compared to unconstrained interactions that are furnished by acyclic molecules. However, MIMs can be more adequate structures for ionic recognition than cyclic compounds if a chemical arrangement of the bond sites that relevantly support more favorable interactions with ions compared to Pauli repulsive ambient is provided. The hydrogen replacement by electron donor (-NH2 ) or acceptor (-NO2 ) groups in MIMs favors the anion/cation recognition due to decreased Pauli repulsion energy and/or more attractive non-covalent bonds. This study clarifies the chemical environment provided by MIMs to interact with ions and highlights these molecules as relevant structures to realize ionic sensing.

9.
Chemistry ; 29(59): e202302132, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37526053

RESUMO

Advanced Organic Chemical Materials Co-constructed Mechanically bonded amphiphiles (MBAs), also known as mechanically interlocked molecules (MIMs), have emerged as an important kind of functional building block for the construction of artificial molecular machines and soft materials. Herein, a novel MBA, i. e., bistable [2]rotaxane H2 was designed and synthesized. In the solution state, H2 demonstrated pH and metal ion-responsive emissions due to the presence of a distance-dependent photoinduced electron transfer (PET) process and the fluorescence resonance energy transfer (FRET) process, respectively. Importantly, the amphiphilic feature of H2 has endowed it with unique self-assembly capability, and nanospheres were obtained in a mixed H2 O/CH3 CN solvent. Moreover, the morphology of H2 aggregates can be tuned from nanospheres to vesicles due to the pH-controlled shuttling motion-induced alternation of H2 amphiphilicity. Interestingly, larger spheres with novel pearl-chain-like structures from H2 were observed after adding stoichiometric Zn2+ . In particular, H2 shows pH-responsive emissions in its aggregation state, allowing the visualization of the shuttling movement by just naked eyes. It is assumed that the well-designed [2]rotaxane, and particularly the proposed concept of MBA shown here, will further enrich the families of MIMs, offering prospects for synthesizing more MIMs with novel assembly capabilities and bottom-up building dynamic smart materials with unprecedented functions.

10.
Chemistry ; 29(43): e202301316, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199337

RESUMO

A series of heteroditopic halogen bonding (XB) [2]rotaxanes were prepared via a combination of passive and active metal template-directed strategies. The ability of the [2]rotaxanes to bind alkali metal halide ion-pairs was investigated by extensive 1 H NMR titration studies, wherein detailed analysis of cation, anion and ion-pair affinity measurements indicate dramatic positive cooperative enhancements in halide anion association upon either Na+ or K+ pre-complexation. This study demonstrates that careful consideration of multiple, parallel and competing binding equilibria is essential when interpreting observed 1 H NMR spectral changes in ion-pair receptor systems, especially those which exhibit dynamic behaviour. Importantly, in comparison to XB [2]catenane analogues, these neutral XB heteroditopic [2]rotaxane host systems demonstrated that despite their relatively weaker cation and anion binding affinities, they exhibit a notably higher level of positive cooperativity for alkali metal halide ion-pair binding, highlighting the role of greater co-conformational adaptive behaviour in mechanically-bonded hosts for the purposes of charged species recognition.

11.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903306

RESUMO

Understanding molecular interactions in mechanically interlocked molecules (MIMs) is challenging because they can be either donor-acceptor interactions or radical pairing interactions, depending on the charge states and multiplicities in the different components of the MIMs. In this work, for the first time, the interactions between cyclobis(paraquat-p-phenylene) (abbreviated as CBPQTn+ (n = 0-4)) and a series of recognition units (RUs) were investigated using the energy decomposition analysis approach (EDA). These RUs include bipyridinium radical cation (BIPY•+), naphthalene-1,8:4,5-bis(dicarboximide) radical anion (NDI•-), their oxidized states (BIPY2+ and NDI), neutral electron-rich tetrathiafulvalene (TTF) and neutral bis-dithiazolyl radical (BTA•). The results of generalized Kohn-Sham energy decomposition analysis (GKS-EDA) reveal that for the CBPQTn+···RU interactions, correlation/dispersion terms always have large contributions, while electrostatic and desolvation terms are sensitive to the variation in charge states in CBPQTn+ and RU. For all the CBPQTn+···RU interactions, desolvation terms always tend to overcome the repulsive electrostatic interactions between the CBPQT cation and RU cation. Electrostatic interaction is important when RU has the negative charge. Moreover, the different physical origins of donor-acceptor interactions and radical pairing interactions are compared and discussed. Compared to donor-acceptor interactions, in radical pairing interactions, the polarization term is always small, while the correlation/dispersion term is important. With regard to donor-acceptor interactions, in some cases, polarization terms could be quite large due to the electron transfer between the CBPQT ring and RU, which responds to the large geometrical relaxation of the whole systems.

12.
Angew Chem Int Ed Engl ; 62(5): e202214785, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36440816

RESUMO

The first examples of halogen bonding (XB) heteroditopic homo[2]catenanes were prepared by discrete Na+ template-directed assembly of oligo(ethylene glycol) units derived from XB donor-containing macrocycles and acyclic bis-azide precursors, followed by a CuI -mediated azide-alkyne cycloaddition macrocyclisation reaction. Extensive 1 H NMR spectroscopic studies show the [2]catenane hosts exhibit positive cooperative ion-pair recognition behaviour, wherein XB-mediated halide recognition is enhanced by alkali metal cation pre-complexation. Notably, subtle changes in the catenanes' oligo(ethylene glycol) chain length dramatically alters their ion-binding affinity, stoichiometry, complexation mode, and conformational dynamics. Solution-phase and single-crystal X-ray diffraction studies provide evidence for competing host-separated and direct-contact ion-pair binding modes. We further demonstrate the [2]catenanes are capable of extracting solid alkali-metal halide salts into organic media.

13.
Angew Chem Int Ed Engl ; 62(1): e202211387, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36131604

RESUMO

The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.


Assuntos
Paraquat , Viologênios , Paraquat/química
14.
Angew Chem Int Ed Engl ; 62(18): e202301914, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36861821

RESUMO

Mechanically interlocked molecules (MIMs) have gained increasing interest during the last decades, not only because of their aesthetic appeal, but also because their unique properties have allowed them to find applications in nanotechnology, catalysis, chemosensing and biomedicine. Herein we describe how a pyrene molecule with four octynyl substituents can be easily encapsulated within the cavity of a tetragold(I) rectangle-like metallobox, by template formation of the metallo-assembly in the presence of the guest. The resulting assembly behaves as a mechanically interlocked molecule (MIM), in which the four long limbs of the guest protrude from the entrances of the metallobox, thus locking the guest inside the cavity of the metallobox. The new assembly resembles a metallo-suit[4]ane, given the number of protruding long limbs and the presence of the metal atoms in the host molecule. However, unlike normal MIMs, this molecule can release the tetra-substituted pyrene guest by the addition of coronene, which can smoothly replace the guest in the cavity of the metallobox. Combined experimental and computational studies allowed the role of the coronene molecule in facilitating the release of the tetrasubstituted pyrene guest to be explained, through a process that we named "shoehorning", as the coronene compresses the flexible limbs of the guest so that it can reduce its size to slide in and out the metallobox.

15.
Angew Chem Int Ed Engl ; 62(47): e202312745, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37772928

RESUMO

The first examples of [2]catenanes capable of selective anion transport across a lipid bilayer are reported. The neutral halogen bonding (XB) [2]catenanes were prepared via a chloride template-directed strategy in an unprecedented demonstration of using XB⋅⋅⋅anion interactions to direct catenane assembly from all-neutral components. Anion binding experiments in aqueous-organic solvent media revealed strong halide over oxoanion selectivity, and a marked enhancement in the chloride and bromide affinities of the catenanes relative to their constituent macrocycles. The catenanes additionally displayed an anti-Hofmeister binding preference for bromide over the larger iodide anion, illustrating the efficacy of employing sigma-hole interactions in conjunction with the mechanical bond effect to tune receptor selectivity. Transmembrane anion transport studies conducted in POPC LUVs revealed that the catenanes were more effective anion transporters than the constituent macrocycles, with high chloride over hydroxide selectivity, which is critical to potential therapeutic applications of anionophores. Remarkably these outperform existing acyclic halogen bonding anionophores with regards to this selectivity. Record chloride over nitrate anion transport selectivity was also observed. This represents a rare example of the direct translation of intrinsic anion binding affinities to anion transport behaviour, and demonstrates the key role of the catenane mechanical bond effect for enhanced anion transport selectivity.

16.
Angew Chem Int Ed Engl ; 62(46): e202314481, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37794215

RESUMO

Poly[n]catenanes have exceptional mechanical bonding properties that give them tremendous potential for use in the development of molecular machines and soft materials. Synthesizing these compounds has, however, proven to be a formidable challenge. Herein, we describe a concise method for the construction of twisted polycatenanes. Our approach involves using preorganized double helicates as templates, linked crosswise in a linear fashion by either silver ions or triple bonds. By using this approach, we successfully synthesized twisted polycatenanes with both coordination and covalent bonding employing Ag(I) ions and ethynylene units, respectively, as the linkages and leveraging the same Ag(I)-templated double helicate in both cases. Synthesis with Ag(I) ions formed a single-crystalline one-dimensional (1D) coordination poly[n]catenane, and synthesis using ethynylene units generated 1D fibers which self-assembled with solvents to form a gel. Our results confirm the potential of multi-stranded metallohelicates for creating sophisticated mechanically interlocked molecules and polymers, which could pave the way for exploration in the realms of molecular nanotopology and materials design.

17.
Angew Chem Int Ed Engl ; 62(37): e202306489, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37506278

RESUMO

Mechanical bonds have been utilized as promising motifs to construct mechanically interlocked aerogels (MIAs) with mechanical adaptivity and multifunctionality. However, fabricating such aerogels with not only precise chemical structures but also dynamic features remains challenging. Herein, we present MIAs carrying dense [2]rotaxane units, which bestow both the stability and flexibility of the aerogel network. Owing to the stable chemical structure of a [2]rotaxane, MIAs possessing a precise and full-scale mechanically interlocked network could be fabricated with the aid of diverse solvents. In addition, the dynamic nature of the [2]rotaxane resulted in morphologies and mechanical performances of the MIAs that can be dramatically modulated under chemical stimuli. We hope that the structure-property relationship in MIAs will facilitate the development of mechanically interlocked materials and provide novel opportunities toward constructing smart materials with multifunctionalities.

18.
Angew Chem Int Ed Engl ; 62(42): e202309605, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37651501

RESUMO

The ever-increasing demand for data storage and neuromorphic computing calls for innovative, high-density solutions, such as resistive random-access memory (RRAM). However, the integration of resistive switching and rectification at the nanoscale remains a formidable challenge. In this study, we introduce a bistable [2]catenane-based supramolecular junction that simultaneously functions as a resistive switch and a diode. All supramolecular junctions are highly stable and reproducible over thousands of resistive switching cycles, because the nano-confinement of two mechanically interlocked rings can stabilize the radical states of pyridinium moieties under ambient conditions. The successful realization of supramolecular junctions in functionality with a thickness of approximately 2 nm presents a promising avenue for the development of molecule-scale based RRAM for a better solution to high density and energy efficiency.

19.
Angew Chem Int Ed Engl ; 61(50): e202214523, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264711

RESUMO

Exceptionally strong halogen bonding (XB) donor-chloride interactions are exploited for the chloride anion template synthesis of neutral XB [2]rotaxane host systems which contain perfluoroaryl-functionalised axle components, including a remarkably potent novel 4,6-dinitro-1,3-bis-iodotriazole motif. Halide anion recognition properties in aqueous-organic media, determined via extensive 1 H NMR halide anion titration experiments, reveal the rotaxane host systems exhibit dramatically enhanced affinities for hydrophilic Cl- and Br- , but conversely diminished affinities for hydrophobic I- , relative to their non-interlocked axle counterparts. Crucially, this mechanical bond effect induces a binding selectivity which directly opposes Hofmeister bias. Free-energy analysis of this mechanical bond enhancement demonstrates anion recognition by neutral XB interlocked host systems as a rare and general strategy to engineer anti-Hofmeister bias anion selectivity in synthetic receptor design.

20.
Angew Chem Int Ed Engl ; 61(4): e202113837, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34780082

RESUMO

We describe herein the self-assembly synthesis of an octanuclear CoII [2]catenane {[Co4 (H2 L)6 ]2 16+ } formed by the mechanical interlocking of two {[Co4 (H2 L)6 ]8+ } rectangles of unprecedented topology. Subtle manipulation of the synthetic conditions allows the isolation of a mixed-valence [Co2 III /Co2 II ]10+ non-catenated rectangle. The CoII centers in the [2]catenane exhibit slow relaxation of their magnetic moment, i. e. single-molecule magnet properties, dominated by quantum tunneling and Raman relaxation processes. This work shows that metallo-supramolecular chemistry can precisely control the organization of single-molecule magnets in topologically complex arrangements.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa