Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Mol Cell ; 81(13): 2705-2721.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974911

RESUMO

The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.


Assuntos
Chaetomium , Proteínas Fúngicas , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfatos de Fosfatidilinositol , Serina C-Palmitoiltransferase , Chaetomium/química , Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo
2.
Mol Cell ; 81(17): 3623-3636.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270916

RESUMO

ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.


Assuntos
Bacillus subtilis/citologia , Citidina Trifosfato/metabolismo , Pirofosfatases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Membrana Celular/metabolismo , Cromossomos Bacterianos/genética , Citidina Trifosfato/fisiologia , Proteínas do Citoesqueleto/genética , Pirofosfatases/fisiologia
3.
J Lipid Res ; 65(3): 100506, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272356

RESUMO

Diacylglycerol kinases (DGKs) are lipid kinases that mediate the phosphorylation of diacylglycerol (DAG) leading to the production of phosphatidic acid (PtdOH). To examine the role of phosphorylation on DGK-θ, we first identified the phosphorylated sites on endogenous DGK-θ from mouse brain and found four sites: S15, S17, which we refer to phosphomotif-1 sites, and S22 and S26 which we refer to as phosphomotif-2 sites. This study focused on the role of these phosphorylated sites on enzyme activity, membrane binding, thermal stability, and cellular half-life of DGK-θ. After generating a construct devoid of all non-catalytic phosphorylation sites (4A), we also generated other constructs to mimic phosphorylation of these residues by mutating them to glutamate (E). Our data demonstrate that an increase in membrane affinity requires the phosphorylation of all four endogenous sites as the phosphomimetic 4E but not other phosphomimietics. Furthermore, 4E also shows an increase in basal activity as well as an increase in the Syt1-induced activity compared to 4A. It is noteworthy that these phosphorylations had no effect on the thermal stability or cellular half-life of this enzyme. Interestingly, when only one phosphorylation domain (phosphomotif-1 or phosphomotif-2) contained phosphomimetics (S15E/S17E or S22E/S26E), the basal activity was also increased but membrane binding affinity was not increased. Furthermore, when only one residue in each domain mimicked an endogenous phosphorylated serine (S15E/S22E or S17E/S26E), the Syt1-induced activity as well as membrane binding affinity decreased relative to 4A. These results indicate that these endogenous phosphorylation sites contribute differentially to membrane binding and enzymatic activity.


Assuntos
Diacilglicerol Quinase , Diglicerídeos , Animais , Camundongos , Fosforilação , Diglicerídeos/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo
4.
Small ; : e2401982, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992997

RESUMO

Most organophosphates (OPs) are hydrophobic, and after exposure, can sequester into lipophilic regions within the body, such as adipose tissue, resulting in long term chronic effects. Consequently, there is an urgent need for therapeutic agents that can decontaminate OPs in these hydrophobic regions. Accordingly, an enzyme-polymer surfactant nanocomplex is designed and tested comprising chemically supercharged phosphotriesterase (Agrobacterium radiobacter; arPTE) electrostatically conjugated to amphiphilic polymer surfactant chains ([cat.arPTE][S-]). Experimentally-derived structural data are combined with molecular dynamics (MD) simulations to provide atomic level detail on conformational ensembles of the nanocomplex using dielectric constants relevant to aqueous and lipidic microenvironments. These show the formation of a compact admicelle pseudophase surfactant corona under aqueous conditions, which reconfigures to yield an extended conformation at a low dielectric constant, providing insight into the mechanism underpinning cell membrane binding. Significantly, it demonstrated that [cat.arPTE][S-] spontaneously binds to human mesenchymal stem cell membranes (hMSCs), resulting in on-cell OP hydrolysis. Moreover, the nanoconstruct can endocytose and partition into the intracellular fatty vacuoles of adipocytes and hydrolyze sequestered OP.

5.
Bioessays ; 44(6): e2200011, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35318680

RESUMO

Both RalA and RalB interact with the ubiquitous calcium sensor, calmodulin (CaM). New structural and biophysical characterisation of these interactions strongly suggests that, in the native membrane-associated state, only RalA can be extracted from the membrane by CaM and this non-canonical interaction could underpin the divergent signalling roles of these closely related GTPases. The isoform specificity for RalA exhibited by CaM is hypothesised to contribute to the disparate signalling roles of RalA and RalB in mitochondrial dynamics. This would lead to CaM shuttling RalA to the mitochondrial membrane but leaving RalB localisation unperturbed, and in doing so triggering mitochondrial fission pathways rather than mitophagy.


Assuntos
Calmodulina , Transdução de Sinais , Calmodulina/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Isoformas de Proteínas/metabolismo
6.
Mol Cell Proteomics ; 21(5): 100222, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35257887

RESUMO

Cerebral stroke is one of the leading causes of death in adults worldwide. However, the molecular mechanisms of stroke-induced neuron injury are not fully understood. Here, we obtained phosphoproteomic and proteomic profiles of the acute ischemic hippocampus by LC-MS/MS analysis. Quantitative phosphoproteomic analyses revealed that the dysregulated phosphoproteins were involved in synaptic components and neurotransmission. We further demonstrated that phosphorylation of Synaptotagmin-1 (Syt1) at the Thr112 site in cultured hippocampal neurons aggravated oxygen-glucose deprivation-induced neuronal injury. Immature neurons with low expression of Syt1 exhibit slight neuronal injury in a cerebral ischemia model. Administration of the Tat-Syt1T112A peptide protects neurons against cerebral ischemia-induced injury in vitro and in vivo. Surprisingly, potassium voltage-gated channel subfamily KQT member 2 (Kcnq2) interacted with Syt1 and Annexin A6 (Anxa6) and alleviated Syt1-mediated neuronal injury upon oxygen-glucose deprivation treatment. These results reveal a mechanism underlying neuronal injury and may provide new targets for neuroprotection after acute cerebral ischemia onset.


Assuntos
Isquemia Encefálica , Proteômica , Isquemia Encefálica/metabolismo , Células Cultivadas , Cromatografia Líquida , Glucose/metabolismo , Humanos , Neurônios/metabolismo , Oxigênio/metabolismo , Espectrometria de Massas em Tandem
7.
Nano Lett ; 23(22): 10374-10382, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37921703

RESUMO

The development of new antimicrobial agents to treat infections caused by Gram-negative bacteria is of paramount importance due to increased antibiotic resistance worldwide. Herein, we show that a water-soluble porphyrin-cored hyperbranched conjugated polyelectrolyte (PorHP) exhibits high photodynamic bactericidal activity against the Gram-negative bacteria tested, including a multidrug-resistant (MDR) pathogen, while demonstrating low cytotoxicity toward mammalian cells. Comprehensive analyses reveal that the antimicrobial activity of PorHP proceeds via a multimodal mechanism by effective bacterial capsule shedding, strong bacterial outer membrane binding, and singlet oxygen generation. Through this multimodal antimicrobial mechanism, PorHP displays significant performance for Gram-negative bacteria with >99.9% photodynamic killing efficacy. Overall, PorHP shows great potential as an antimicrobial agent in fighting the growing threat of Gram-negative bacteria.


Assuntos
Anti-Infecciosos , Bactérias Gram-Negativas , Animais , Polieletrólitos/farmacologia , Anti-Infecciosos/farmacologia , Oxigênio Singlete , Antibacterianos/química , Testes de Sensibilidade Microbiana , Mamíferos/metabolismo
8.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396917

RESUMO

Lipoxygenases (LOXs) are a family of enzymes that includes different fatty acid oxygenases with a common tridimensional structure. The main functions of LOXs are the production of signaling compounds and the structural modifications of biological membranes. These features of LOXs, their widespread presence in all living organisms, and their involvement in human diseases have attracted the attention of the scientific community over the last decades, leading to several studies mainly focused on understanding their catalytic mechanism and designing effective inhibitors. The aim of this review is to discuss the state-of-the-art of a different, much less explored aspect of LOXs, that is, their interaction with lipid bilayers. To this end, the general architecture of six relevant LOXs (namely human 5-, 12-, and 15-LOX, rabbit 12/15-LOX, coral 8-LOX, and soybean 15-LOX), with different specificity towards the fatty acid substrates, is analyzed through the available crystallographic models. Then, their putative interface with a model membrane is examined in the frame of the conformational flexibility of LOXs, that is due to their peculiar tertiary structure. Finally, the possible future developments that emerge from the available data are discussed.


Assuntos
Bicamadas Lipídicas , Lipoxigenases , Animais , Humanos , Coelhos , Conformação Molecular , Ácidos Graxos
9.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928107

RESUMO

Aß peptides are known to bind neural plasma membranes in a process leading to the deposit of Aß-enriched plaques. These extracellular structures are characteristic of Alzheimer's disease, the major cause of late-age dementia. The mechanisms of Aß plaque formation and deposition are far from being understood. A vast number of studies in the literature describe the efforts to analyze those mechanisms using a variety of tools. The present review focuses on biophysical studies mostly carried out with model membranes or with computational tools. This review starts by describing basic physical aspects of lipid phases and commonly used model membranes (monolayers and bilayers). This is followed by a discussion of the biophysical techniques applied to these systems, mainly but not exclusively Langmuir monolayers, isothermal calorimetry, density-gradient ultracentrifugation, and molecular dynamics. The Methodological Section is followed by the core of the review, which includes a summary of important results obtained with each technique. The last section is devoted to an overall reflection and an effort to understand Aß-bilayer binding. Concepts such as Aß peptide membrane binding, adsorption, and insertion are defined and differentiated. The roles of membrane lipid order, nanodomain formation, and electrostatic forces in Aß-membrane interaction are separately identified and discussed.


Assuntos
Peptídeos beta-Amiloides , Bicamadas Lipídicas , Lipídeos de Membrana , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Ligação Proteica , Membrana Celular/metabolismo , Doença de Alzheimer/metabolismo , Animais , Fenômenos Biofísicos , Simulação de Dinâmica Molecular
10.
J Neurochem ; 165(2): 246-258, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36625497

RESUMO

Alpha-synuclein (αS), the key protein in Parkinson's disease, is typically described as an intrinsically disordered protein. Consistent with this notion, several context-dependent folding states may coexist in neurons. Unfolded soluble monomers, helical monomers at membranes and helical multimers (soluble or at membranes) have all been reported and may be in an equilibrium with each other. We previously found that αS can be stabilized in its membrane-associated monomeric form by genetically increasing the hydrophobicity of the membrane-embedded half of the αS helix. αS amphipathic helix formation at membranes is governed by up to nine 11-amino acid repeats with the core motif KTKEGV. However, this repeat is only imperfectly conserved; for example, it consists of KAKEGV in repeat #1, KTKEQV in repeat #5, and AVVTGV in the poorly conserved repeat #6. Here we explored the effect of perfecting the αS core repeat to nine times KTKEGV ("9KV") and found by sequential protein extraction that this engineered mutant accumulates in the cytosolic phase of neural cells. Intact-cell cross-linking trapped a part of the cytosolic portion at multimeric positions (30, 60, 80, 100 kDa). Thus, compared to wild-type αS, αS 9KV seems less prone to populating the membrane-associated monomeric form. Removing the "ATVA" intervening amino-acid sequence between repeats 4 and 5 slightly increased cytosolic localization while adding "ATVA" in between all repeats 1-8 caused αS to be trapped as a monomer in membrane fractions. Our results contribute to an ongoing debate on the dynamic structure of αS, highlighting that wild-type αS is unlikely to be fully multimeric/monomeric or fully cytosolic/membrane-associated in cells, but protein engineering can create αS variants that preferentially adopt a certain state. Overall, the imperfect nature of the KTKEGV repeat motifs and the presence of ATVA in between repeats 4 and 5 seem to prevent a strong cytosolic localization of αS and thus play a major role in the protein's ability to dynamically populate cytosolic vs. membrane-associated and monomeric vs. multimeric states.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Solubilidade , Mutação , Doença de Parkinson/metabolismo , Sequência de Aminoácidos
11.
Biol Chem ; 404(2-3): 157-167, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36260915

RESUMO

The assembly of the peroxisomal translocon involves the transition of a soluble form of the peroxisomal targeting receptor PEX5 into a membrane-bound form, which becomes an integral membrane component of the import pore for peroxisomal matrix proteins. How this transition occurs is still a mystery. We addressed this question using a artificial horizontal bilayer in combination with fluorescence time-correlated single photon counting (TCSPC) and electrophysiological channel recording. Purified human isoform PEX5L and truncated PEX5L(1-335) lacking the cargo binding domain were selectively labeled with thiol-reactive Atto-dyes. Diffusion coefficients of labeled protein in solution show that PEX5L is monomeric with a rather compact spherical conformation, while the truncated protein appeared in a more extended conformation. Labeled PEX5L and the truncated PEX5L(1-335) bind stably to horizontal bilayer thereby accumulating around 100-fold. The diffusion coefficients of the membrane-bound PEX5L forms are 3-4 times lower than in solution, indicating the formation of larger complexes. Electrophysiological single channel recording shows that membrane-bound labeled and non-labeled PEX5L, but not the truncated PEX5L(1-335), can form ion conducting membrane channels. The data suggest that PEX5L is the pore-forming component of the oligomeric peroxisomal translocon and that spontaneous PEX5L membrane surface binding might be an important step in its assembly.


Assuntos
Bicamadas Lipídicas , Peroxissomos , Humanos , Bicamadas Lipídicas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Isoformas de Proteínas/metabolismo , Canais Iônicos/metabolismo , Transporte Proteico
12.
Arch Biochem Biophys ; 742: 109623, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207934

RESUMO

Actinoporins are pore-forming toxins produced by sea anemones. They exert their activity by binding to the membranes of target cells. There, they oligomerize, forming cation-selective pores, and inducing cell death by osmotic shock. In the early days of the field, it was shown that accessible sphingomyelin (SM) in the bilayer is required for the activity of actinoporins. While these toxins can also act on membranes composed solely of phosphatidylcholine (PC) with a high amount of cholesterol (Chol), consensus is that SM acts as a lipid receptor for actinoporins. It has been shown that the 2NH and 3OH moieties of SM are essential for actinoporin recognition. Hence, we wondered if ceramide-phosphoethanolamine (CPE) could also be recognized. Like SM, CPE has the 2NH and 3OH groups, and a positively charged headgroup. While actinoporins have been observed to affect membranes containing CPE, Chol was always also present, with the recognition of CPE remaining unclear. To test this possibility, we used sticholysins, produced by the Caribbean Sea anemone Stichodactyla helianthus. Our results show that sticholysins can induce calcein release on vesicles composed only of PC and CPE, in absence of Chol, in a way that is comparable to that induced on PC:SM membranes.


Assuntos
Anêmonas-do-Mar , Esfingomielinas , Animais , Compostos Orgânicos/metabolismo , Colesterol/metabolismo , Ceramidas/metabolismo , Anêmonas-do-Mar/metabolismo
13.
Cell Mol Life Sci ; 79(7): 368, 2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35718804

RESUMO

Involvement of alpha-synuclein (αSyn) in Parkinson's disease (PD) is complicated and difficult to trace on cellular and molecular levels. Recently, we established that αSyn can regulate mitochondrial function by voltage-activated complexation with the voltage-dependent anion channel (VDAC) on the mitochondrial outer membrane. When complexed with αSyn, the VDAC pore is partially blocked, reducing the transport of ATP/ADP and other metabolites. Further, αSyn can translocate into the mitochondria through VDAC, where it interferes with mitochondrial respiration. Recruitment of αSyn to the VDAC-containing lipid membrane appears to be a crucial prerequisite for both the blockage and translocation processes. Here we report an inhibitory effect of HK2p, a small membrane-binding peptide from the mitochondria-targeting N-terminus of hexokinase 2, on αSyn membrane binding, and hence on αSyn complex formation with VDAC and translocation through it. In electrophysiology experiments, the addition of HK2p at micromolar concentrations to the same side of the membrane as αSyn results in a dramatic reduction of the frequency of blockage events in a concentration-dependent manner, reporting on complexation inhibition. Using two complementary methods of measuring protein-membrane binding, bilayer overtone analysis and fluorescence correlation spectroscopy, we found that HK2p induces detachment of αSyn from lipid membranes. Experiments with HeLa cells using proximity ligation assay confirmed that HK2p impedes αSyn entry into mitochondria. Our results demonstrate that it is possible to regulate αSyn-VDAC complexation by a rationally designed peptide, thus suggesting new avenues in the search for peptide therapeutics to alleviate αSyn mitochondrial toxicity in PD and other synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Células HeLa , Humanos , Lipídeos , Mitocôndrias/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , alfa-Sinucleína/metabolismo
14.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834897

RESUMO

The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.


Assuntos
Proteínas do Esmalte Dentário , Lipossomos , Animais , Camundongos , Amelogenina/metabolismo
15.
J Biol Chem ; 296: 100271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428933

RESUMO

Aggregation of α-synuclein (αS) leads to the hallmark neuropathology of Parkinson's disease (PD) and related synucleinopathies. αS has been described to exist in both cytosolic and membrane-associated forms, the relative abundance of which has remained unsettled. To study αS under the most relevant conditions by a quantitative method, we cultured and matured rodent primary cortical neurons for >17 days and determined αS cytosol:membrane distribution via centrifugation-free sequential extractions based on the weak ionic detergent digitonin. We noticed that at lower temperatures (4 °C or room temperature), αS was largely membrane-associated. At 37 °C, however, αS solubility was markedly increased. In contrast, the extraction of control proteins (GAPDH, cytosolic; calnexin, membrane) was not affected by temperature. When we compared the relative distribution of the synuclein homologs αS and ß-synuclein (ßS) under various conditions that differed in temperature and digitonin concentration (200-1200 µg/ml), we consistently found αS to be more membrane-associated than ßS. Both proteins, however, exhibited temperature-dependent membrane binding. Under the most relevant conditions (37 °C and 800 µg/ml digitonin, i.e., the lowest digitonin concentration that extracted cytosolic GAPDH to near completion), cytosolic distribution was 49.8% ± 9.0% for αS and 63.6% ± 6.6% for ßS. PD-linked αS A30P was found to be largely cytosolic, confirming previous studies that had used different methods. Our work highlights the dynamic nature of cellular synuclein behavior and has important implications for protein-biochemical and cell-biological studies of αS proteostasis, such as testing the effects of genetic and pharmacological manipulations.


Assuntos
Membrana Celular/genética , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , beta-Sinucleína/genética , Sequência de Aminoácidos/genética , Animais , Membrana Celular/química , Humanos , Lentivirus/genética , Neurônios/química , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Cultura Primária de Células , Agregados Proteicos/genética , Agregados Proteicos/imunologia , Agregação Patológica de Proteínas/genética , Ligação Proteica/genética , Ratos , Temperatura , alfa-Sinucleína/química , alfa-Sinucleína/imunologia , alfa-Sinucleína/isolamento & purificação , beta-Sinucleína/química , beta-Sinucleína/imunologia , beta-Sinucleína/isolamento & purificação
16.
J Biol Chem ; 296: 100159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33277360

RESUMO

Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.


Assuntos
Colesterol/química , Lipossomos/química , Fosfatidilcolinas/química , Fosfatidilinositol 4,5-Difosfato/química , Proteínas de Transporte Vesicular/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Colesterol/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Cell Biol Int ; 46(4): 548-553, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34957648

RESUMO

Wegener's granulomatosis (WG) is a form of systemic vasculitis characterized by granulomatous inflammation of the upper and lower airways, vasculitis, and necrotizing glomerulonephritis. It is strongly associated with anti-neutrophil cytoplasmic antibodies against proteinase 3 (PR3-ANCAs). Various in vitro observations provided strong evidence that autoimmune PR3-ANCAs are directly involved in glomerular and vascular inflammation. However, little is known about the pathogenic significance of PR3-ANCAs in vivo. Therefore, the generation of animal models helped to validate the suggested autoimmune origin and pathophysiology in WG. To characterize and improve the models, numerous studies were carried out to elucidate the effect of mouse/rat PR3-ANCAs on neutrophil function as well as the role of CD4/CD8 in T and B cells and antibodies in the pathogenesis of the disease. Understanding the pathogenesis is therefore critical to relate these models to human studies hoping that they will be useful for better insight of WG and the development of specific therapies for the disease.


Assuntos
Granulomatose com Poliangiite , Animais , Anticorpos Anticitoplasma de Neutrófilos , Camundongos , Mieloblastina , Neutrófilos , Ratos
18.
J Biol Chem ; 295(37): 12885-12899, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32605925

RESUMO

Integrin receptors regulate normal cellular processes such as signaling, cell migration, adhesion to the extracellular matrix, and leukocyte function. Talin recruitment to the membrane is necessary for its binding to and activation of integrin. Vertebrates have two highly conserved talin homologs that differ in their expression patterns. The F1-F3 FERM subdomains of cytoskeletal proteins resemble a cloverleaf, but in talin1, its F1 subdomain and additional F0 subdomain align more linearly with its F2 and F3 subdomains. Here, we present the talin2 crystal structure, revealing that its F0-F1 di-subdomain displays another unprecedented constellation, whereby the F0-F1-F2 adopts a new cloverleaf-like arrangement. Using multiangle light scattering (MALS), fluorescence lifetime imaging (FLIM), and FRET analyses, we found that substituting the corresponding residues in talin2 that abolish lipid binding in talin1 disrupt the binding of talin to the membrane, focal adhesion formation, and cell spreading. Our results provide the molecular details of the functions of specific talin isoforms in cell adhesion.


Assuntos
Adesão Celular , Adesões Focais , Talina , Linhagem Celular , Adesões Focais/química , Adesões Focais/genética , Adesões Focais/metabolismo , Humanos , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Talina/química , Talina/genética , Talina/metabolismo
19.
J Biol Chem ; 295(7): 2136-2147, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31796629

RESUMO

PlsX plays a central role in the coordination of fatty acid and phospholipid biosynthesis in Gram-positive bacteria. PlsX is a peripheral membrane acyltransferase that catalyzes the conversion of acyl-ACP to acyl-phosphate, which is in turn utilized by the polytopic membrane acyltransferase PlsY on the pathway of bacterial phospholipid biosynthesis. We have recently studied the interaction between PlsX and membrane phospholipids in vivo and in vitro, and observed that membrane association is necessary for the efficient transfer of acyl-phosphate to PlsY. However, understanding the molecular basis of such a channeling mechanism remains a major challenge. Here, we disentangle the binding and insertion events of the enzyme to the membrane, and the subsequent catalysis. We show that PlsX membrane binding is a process mostly mediated by phospholipid charge, whereas fatty acid saturation and membrane fluidity remarkably influence the membrane insertion step. Strikingly, the PlsXL254E mutant, whose biological functionality was severely compromised in vivo but remains catalytically active in vitro, was able to superficially bind to phospholipid vesicles, nevertheless, it loses the insertion capacity, strongly supporting the importance of membrane insertion in acyl-phosphate delivery. We propose a mechanism in which membrane fluidity governs the insertion of PlsX and thus regulates the biosynthesis of phospholipids in Gram-positive bacteria. This model may be operational in other peripheral membrane proteins with an unprecedented impact in drug discovery/development strategies.


Assuntos
Proteínas de Bactérias/genética , Bactérias Gram-Positivas/genética , Fluidez de Membrana/genética , Fosfolipídeos/biossíntese , Bacillus subtilis/genética , Enterococcus faecalis/genética , Escherichia coli/genética , Fosfatos/metabolismo , Fosfolipídeos/genética
20.
J Biol Chem ; 295(26): 8819-8833, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385109

RESUMO

Retroviral Gag polyproteins are targeted to the inner leaflet of the plasma membrane through their N-terminal matrix (MA) domain. Because retroviruses of different morphogenetic types assemble their immature particles in distinct regions of the host cell, the mechanism of MA-mediated plasma membrane targeting differs among distinct retroviral morphogenetic types. Here, we focused on possible mechanistic differences of the MA-mediated plasma membrane targeting of the B-type mouse mammary tumor virus (MMTV) and C-type HIV-1, which assemble in the cytoplasm and at the plasma membrane, respectively. Molecular dynamics simulations, together with surface mapping, indicated that, similarly to HIV-1, MMTV uses a myristic switch to anchor the MA to the membrane and electrostatically interacts with phosphatidylinositol 4,5-bisphosphate to stabilize MA orientation. We observed that the affinity of MMTV MA to the membrane is lower than that of HIV-1 MA, possibly related to their different topologies and the number of basic residues in the highly basic MA region. The latter probably reflects the requirement of C-type retroviruses for tighter membrane binding, essential for assembly, unlike for D/B-type retroviruses, which assemble in the cytoplasm. A comparison of the membrane topology of the HIV-1 MA, using the surface-mapping method and molecular dynamics simulations, revealed that the residues at the HIV-1 MA C terminus help stabilize protein-protein interactions within the HIV-1 MA lattice at the plasma membrane. In summary, HIV-1 and MMTV share common features such as membrane binding of the MA via hydrophobic interactions and exhibit several differences, including lower membrane affinity of MMTV MA.


Assuntos
Membrana Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Infecções por Retroviridae/metabolismo , Infecções Tumorais por Vírus/metabolismo , Animais , Membrana Celular/patologia , Infecções por HIV/patologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Modelos Moleculares , Infecções por Retroviridae/patologia , Infecções Tumorais por Vírus/patologia , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa