Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139637

RESUMO

Microelectromechanical systems (MEMS)-based filter with microchannels enables the removal of various microorganisms, including viruses and bacteria, from fluids. Membranes with porous channels can be used as filtration interfaces in MEMS hemofilters or mini-dialyzers. The main problems associated with the filtration process are optimization of membrane geometry and fouling. A nanoporous aluminum oxide membrane was fabricated using an optimized two-step anodization process. Computational strength modeling and analysis of the membrane with specified parameters were performed using the ANSYS structural module. A fuzzy simulation was performed for the numerical analysis of flux through the membrane. The membrane was then incorporated with the prototype for successive filtration. The fluid flux and permeation analysis of the filtration process have been studied. Scanning electron microscope (SEM) micrographs of membranes have been obtained before and after the filtration cycles. The SEM results indicate membrane fouling after multiple cycles, and thus the flux is affected. This type of fabricated membrane and setup are suitable for the separation and purification of various fluids. However, after several filtration cycles, the membrane was degraded. It requires a prolonged chemical cleaning. High-density water has been used for filtration purposes, so this MEMS-based filter can also be used as a mini-dialyzer and hemofilter in various applications for filtration. Such a demonstration also opens up a new strategy for maximizing filtration efficiency and reducing energy costs for the filtration process by using a layered membrane setup.

2.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769251

RESUMO

In this study, we assess the effects of volumetric flow and feed temperature on the performance of a spiral-wound module for the recovery of free acid using diffusion dialysis. Performance was evaluated using a set of equations based on mass balance under steady-state conditions that describe the free acid yield, rejection factors of metal ions and stream purity, along with chemical analysis of the outlet streams. The results indicated that an increase in the volumetric flow rate of water increased free acid yield from 88% to 93%, but decreased Cu2+ and Fe2+ ion rejection from 95% to 90% and 91% to 86%, respectively. Increasing feed temperature up to 40 °C resulted in an increase in acid flux of 9%, and a reduction in Cu2+ and Fe2+ ion rejection by 2-3%. Following diffusion dialysis, the only evidence of membrane degradation was a slight drop in permselectivity and an increase in diffusion acid and salt permeability. Results obtained from the laboratory tests used in a basic economic study showed that the payback time of the membrane-based regeneration unit is approximately one year.


Assuntos
Ácidos Sulfúricos/química , Temperatura
3.
Biochim Biophys Acta ; 1841(5): 799-810, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24184515

RESUMO

Endocytosed (glyco)sphingolipids are degraded, together with other membrane lipids in a stepwise fashion by endolysosomal enzymes with the help of small lipid binding proteins, the sphingolipid activator proteins (SAPs), at the surface of intraluminal lysosomal vesicles. Inherited defects in a sphingolipid-degrading enzyme or SAP cause the accumulation of the corresponding lipid substrates, including cytotoxic lysosphingolipids, such as galactosylsphingosine and glucosylsphingosine, and lead to a sphingolipidosis. Analysis of patients with prosaposin deficiency revealed the accumulation of intra-endolysosmal vesicles and membrane structures (IM). Feeding of prosaposin reverses the storage, suggesting inner membrane structures as platforms of sphingolipid degradation. Water soluble enzymes can hardly attack sphingolipids embedded in the membrane of inner endolysosomal vesicles. The degradation of sphingolipids with few sugar residues therefore requires the help of the SAPs, and is strongly stimulated by anionic membrane lipids. IMs are rich in anionic bis(monoacylglycero)phosphate (BMP). This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Esfingolipídeos/metabolismo , Animais , Humanos , Proteínas Ativadoras de Esfingolipídeos/metabolismo
4.
Membranes (Basel) ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38921489

RESUMO

The commercial ultrafiltration polyethersulfone (PES) membranes (10 and 100 kDa) blended with polyvinylpyrrolidone (PVP) were applied for the filtration of car wash wastewater. Periodical membrane rinsing with water did not prevent fouling and a decrease in permeate flux was observed. Fouling was reduced by washing the membranes with cleaning agents, which are used in car washes to clean wheels and remove insects. In addition to surfactants, these agents contain NaOH, hence the pH value of cleaning solutions was over 11. Long-term contact with such solutions resulted in the removal of PVP from the membrane matrix and an increase in pore size. The PES membranes were soaked in an alkaline solution (pH = 11.5) for 20 months, after which the 200 kDa dextran rejection decreased from 95% to 80%. To compare with the static degradation conditions, 8 weeks of alkaline agent filtration was realized, after which the dextran (200 kDa) rejection decreased below 50%. This indicated that the cross-flow of alkaline agents can accelerate the removal of components building the membrane matrix. Despite membrane degradation, the separation efficiency (the rejection of chemical oxygen demand-COD, turbidity, and surfactants) during the treatment of synthetic car wash wastewater was similar to that obtained for pristine membranes.

5.
Environ Sci Pollut Res Int ; 30(19): 55742-55755, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36905545

RESUMO

The extensive usage of iron oxide nanoparticles (FeO NPs) in commercial and biomedical applications raises the risk of releasing their remains into the aquatic ecosystems and this could possibly cause cytotoxic effects on aquatic organisms. Thus, the toxicity assessment of FeO NPs on cyanobacteria, which are primary producers at the bottom of food chain in aquatic ecosystems, is essential to gain information about the potential ecotoxicological threat on aquatic biota. The present study investigated the cytotoxic effects of FeO NPs on Nostoc ellipsosporum using different concentrations (0, 10, 25, 50 and 100 mg L-1) to track the time-dependent and dose-dependent effects and compared with its bulk equivalent. In addition, the impacts of FeO NPs and bulk counterpart on cyanobacterial cells were assessed under nitrogen as well as nitrogen-deficient conditions, because of ecological role of cyanobacteria in nitrogen fixation. The study revealed that the highest protein content was observed in the control in both types of BG-11 media compared to treatments of nano and bulk particles of Fe2O3. A 23% reduction in protein in nanoparticle treatment and a 14% reduction in bulk treatment at 100 mg L-1 was observed in BG-11 medium. At same concentration, in BG-110 media, this decline was even more intense with 54% reduction in nanoparticle and a 26% reduction in bulk. Catalytic activity of catalase and superoxide dismutase was found to be linearly correlated with the dose concentration for nano and bulk form in BG-11 as well as BG-110 media. The increased levels of lactate dehydrogenase act as biomarker of the cytotoxicity brought on by nanoparticles. Optical, scanning electron, and transmission electron microscopy all demonstrated the cell entrapment, nanoparticle deposition on the cell surface, cell wall collapse and membrane degradation. A cause for concern is that nanoform was found to be more hazardous than bulk form.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nostoc , Ecossistema , Nanopartículas/toxicidade , Proteínas , Água Doce , Nitrogênio , Nanopartículas Magnéticas de Óxido de Ferro
6.
Membranes (Basel) ; 13(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999371

RESUMO

An electrochemical hydrogen pump (EHP) with a proton exchange membrane (PEM) used as part of fusion cycle systems successfully combines the processes of hydrogen extraction, purification and compression in a single device. This work comprises a novel study of the effect of ionizing radiation on the properties of the PEM as part of the EHP. Radiation exposure leads to nonspecific degradation of membranes, changes in their structure, and destruction of side and matrix chains. The findings from this work reveal that the replacement of sulfate groups in the membrane structure with carboxyl and hydrophilic groups leads to a decrease in conductivity from 0.115 to 0.103 S cm-1, which is reflected in halving the device performance at a temperature of 30 °C. The shift of the ionomer peak of small-angle X-ray scattering curves from 3.1 to 4.4 nm and the absence of changes in the water uptake suggested structural changes in the PEM after the irradiation. Increasing the EHP operating temperature minimized the effect of membrane irradiation on the pump performance, but enhanced membrane drying at low pressure and 50 °C, which caused a current density drop from 0.52 to 0.32 A·cm-2 at 0.5 V.

7.
Membranes (Basel) ; 13(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36984735

RESUMO

Polymer electrolyte membrane water electrolysis (PEMWE) is a leading candidate for the development of a sustainable hydrogen infrastructure. The heart of a PEMWE cell is represented by the membrane electrode assembly (MEA), which consists of a polymer electrolyte membrane (PEM) with catalyst layers (CLs), flow fields, and bipolar plates (BPPs). The weakest component of the system is the PEM, as it is prone to chemical and mechanical degradation. Membrane chemical degradation is associated with the formation of hydrogen peroxide due to the crossover of product gases (H2 and O2). In this paper, membrane failure due to H2 crossover was addressed in a membrane-focused accelerated stress test (AST). Asymmetric H2O and gas supply were applied to a test cell in OCV mode at two temperatures (60 °C and 80 °C). Electrochemical characterization at the beginning and at the end of testing revealed a 1.6-fold higher increase in the high-frequency resistance (HFR) at 80 °C. The hydrogen crossover was measured with a micro-GC, and the fluoride emission rate (FER) was monitored during the ASTs. A direct correlation between the FER and H2 crossover was identified, and accelerated membrane degradation at higher temperatures was detected.

8.
Turk J Chem ; 46(1): 206-216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38143884

RESUMO

Oxidative cleaning agents such as hydrogen peroxide (H2O2) and sodium hypochlorite (NaClO) used in water and wastewater treatment play an important role in the degradation and rapid aging of the polymeric membranes. In addition, when the temperature is above the maximum operating range of the membrane, it negatively affects the membrane performance. H2O2, which is also known as a green and environmentally friendly strong oxidant because of releasing only water as a by-product, can provide good cleaning efficiency under temperature, but its influence on membrane aging is not fully understood. In this study, the aging of polyethersulfone (PES) ultrafiltration (UF) membrane using H2O2 under high-temperature conditions and degradation of the polymeric membrane were systematically investigated using response surface methodology (RSM). The effects of H2O2 concentration, temperature, and treatment time were tested on membrane flux, contact angle, pore size, and porosity for decomposed membrane. The results showed that normalized permeability was significantly changed approximately 2.34-folds by H2O2 concentration at an exposure dose of 5 mM and 373 K temperature. Moreover, the largest pore sizes as 161.23 nm and 160.73 nm were obtained at the conditions of 2.5 mM H2O2 concentration and 373 K temperature. The lowest contact angle (54.76°) and porosity (61.88%) were obtained at the same conditions. The results depicted that H2O2 can be used for membrane cleaning with minimum membrane degradation at moderate conditions.

9.
Toxicon ; 197: 12-23, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33872676

RESUMO

Snakebite envenoming is a neglected tropical disease affecting millions of people every year, especially in vulnerable rural populations in the developing world. Viperid snakes cause envenomings characterized by a complex pathophysiology which includes local and systemic hemorrhage due to the action of snake venom metalloproteinases (SVMPs). The pathogenesis of SVMP-induced systemic hemorrhage has not been investigated in detail. This study explored the pulmonary hemorrhage induced in a murine model by a P-III SVMP from the venom of Crotalus simus. Histological analysis revealed extravasation in the lungs as early as 15 min after intravenous injection of the toxin, and hemorrhage increased at 360 min. Western blot analysis demonstrated the cleavage of basement membrane (BM) proteins in lung homogenates and in bronchoalveolar lavage fluid, implying an enzymatic disruption of this extracellular matrix structure at the capillary-alveolar barrier. Likewise, alveolar edema was observed, with an increment in protein concentration in the bronchoalveolar lavage fluid, and a neutrophil-rich inflammatory infiltrate was present in the parenchyma of the lungs as part of the inflammatory reaction. Pretreatment of mice with indomethacin, pentoxifylline and an anti-neutrophil antibody resulted in a significant decrease in pulmonary hemorrhage at 360 min. These findings suggest that this P-III SVMP induces acute lung injury through the direct action of this enzyme in the capillary-alveolar barrier integrity, as revealed by BM degradation, and as a consequence of the inflammatory reaction that develops in lung tissue. Our findings provide novel clues to understand the mechanism of action of hemorrhagic SVMPs in the lungs.


Assuntos
Venenos de Crotalídeos , Metaloproteases , Animais , Membrana Basal , Venenos de Crotalídeos/toxicidade , Hemorragia/induzido quimicamente , Inflamação , Metaloproteases/toxicidade , Camundongos , Venenos de Serpentes
10.
J Alzheimers Dis Rep ; 4(1): 67-77, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32328565

RESUMO

Aging-related protein misfolding and aggregation may play critical roles in the pathogenesis of numerous diseases. In the brain, extracellular aggregated amyloid-ß (Aß) is closely related to the death of neurons in individuals with Alzheimer's disease (AD). Albumin-Aß binding is important in preventing Aß fibril aggregation. However, because albumin is the most abundant and important antioxidant in the circulation, aging-related oxidative stress could have a significant effect on the molecular conformation and binding capacities of albumin. To investigate the link between misfolded albumin and AD, we developed fluorescent assays to determine the effects of misfolded albumin on membrane integrity in the presence of a lipolytic, inflammatory response-like enzyme, secretory phospholipase A2 (sPLA2). We found that misfolded albumin increased degradation of phospholipids in highly fluid bilayer membranes in the presence of sPLA2 due to hydrophobic effects of misfolded albumin. High amounts of misfolded albumin were present in sera of elderly (average 74 years) versus young (average 24 years) subjects (p < 0.0001). Albumin in cerebrospinal fluid (CSF) of elderly subjects, though present in small concentrations, had a 2- to 3-fold increased capacity to promote sPLA2-catalyzed membrane phospholipid degradation as compared with the same amount of albumin in serum (p < 0.0001). In addition, the fatty acid binding capacity of albumin in CSF from female subjects was considerably lower than values obtained for men, especially for individuals diagnosed with AD (p = 0.0006). This study suggests that inflammation, misfolded albumin and/or other dysfunctional proteins, and changes in membrane fluidity could alter cell membrane integrity and homeostasis and contribute to the pathogenesis of aging-related dementia and AD.

11.
Materials (Basel) ; 13(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233738

RESUMO

Polymer Electrolyte Fuel Cells (PEFCs) are one of the most promising power generation systems. The main component of a PEFC is the proton exchange membrane (PEM), object of intense research to improve the efficiency of the cell. The most commonly and commercially successful used PEMs are Nafion™ perfluorosulfonic acid (PFSA) membranes, taken as a reference for the development of innovative and alternative membranes. Usually, these membranes undergo different pre-treatments to enhance their characteristics. With the aim of understanding the utility and the effects of such pre-treatments, in this study, a commercial Nafion™ NR212 membrane was subjected to two different chemical pre-treatments, before usage. HNO3 or H2O2 were selected as chemical agents because the most widely used ones in the procedure protocols in order to prepare the membrane in a well-defined reference state. The pre-treated membranes properties were compared to an untreated membrane, used as-received. The investigation has showed that the pre-treatments enhance the hydrophilicity and increase the water molecules coordinated to the sulphonic groups in the membrane structure, on the other hand the swelling of the membranes also increases. As a consequence, the untreated membrane shows a better mechanical resistance, a good electrochemical performance and durability in fuel cell operations, orienting toward the use of the NR212 membrane without any chemical pre-treatment.

12.
ACS Appl Mater Interfaces ; 11(51): 47917-47928, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31742391

RESUMO

An accelerated stress test (AST) method was developed to estimate the lifetime of ion-exchange membranes in a vanadium redox flow battery. The oxidative VO2+ ions present in the charged positive electrolyte are the predominant stressor causing loss of functional groups and membrane conductivity. Membrane aging was accelerated in ex situ tests by exploiting elevated temperatures and the increased oxidative strength of Ce4+. Acceleration factors were determined on the basis of the analysis of aged radiation grafted g(S-AN) membranes. The degradation in a Ce4+ solution was found to be ∼4 times faster than in VO2+. The highest acceleration factor of ∼200 was found for the degradation with Ce4+ at 80 °C. The degradation reaction present in the accelerated stress test showed a similar activation energy of ∼50 kJ/mol in VO2+ and Ce4+ solutions, suggesting a similar reaction pathway. The applicability of the test was further evaluated with the second membrane, g(AMS-MAN). Its lifetime was estimated based on the accelerated stress test and acceleration factors previously determined for the g(S-AN) membrane and compared to the lifetime projected from an extended cycling experiment in the cell. The two values were in the same range of ∼4000 h. The proposed AST can serve as a basis for predictive modeling of membrane lifetime in vanadium redox flow batteries. The potential of the method and the limitations are discussed.

13.
J Insect Physiol ; 117: 103912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31301311

RESUMO

The peritrophic membrane (or peritrophic matrix: PM) is a thin membranous structure that lies along the midgut epithelium in the midgut lumen and consists of chitin and proteins. PM exists between ingested food material and midgut epithelium cells and it is on the frontline of insect-plant and insect-microbe interactions. Therefore, proteins that play major roles in plant defense against herbivorous insects and in microbial attack on insects should penetrate, destroy or modify the PM to accomplish their roles. Recently, it has become clear that some proteins crucial to plant defense or microbial attack have the PM as their primary target. In addition, several plant defense proteins have been reported to affect the PM, although it is still unclear whether the PM is their primary target. This review introduces several of these proteins: fusolin and enhancin, two proteins produced by insect viruses that greatly enhance infection of the viruses by disrupting the PM; the MLX56 family proteins found in mulberry latex as defense proteins against insect herbivores, which modify the PM to a thick structure that inhibits digestive processes; Mir1-CP, a defense cysteine protease from maize that inhibits the growth of insects at very low concentrations and degrades the PM structures; and chitinases and lectins. The importance, necessary characteristics, and modes of action of PM-targeting proteins are then discussed from a strategic point of view, by spotlighting the importance of selective permeability of the PM. Finally, the review discusses the possibility of applying PM-targeting proteins for the control of pest insects.


Assuntos
Interações Hospedeiro-Patógeno , Insetos/virologia , Animais , Trato Gastrointestinal , Controle de Insetos , Proteínas de Plantas , Proteínas Virais
14.
Dev Neurobiol ; 78(3): 283-297, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28884504

RESUMO

Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 283-297, 2018.


Assuntos
Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Proteólise , Animais , Humanos
15.
Bio Protoc ; 8(8): e2807, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34286024

RESUMO

Lipid peroxidation is a physiological indicator of both biotic and abiotic stress responses, hence is often used as a biomarker to assess stress-induced cell damage or death. Here we demonstrate an easy, quick and cheap staining method to assess lipid peroxidation in plant tissues. In this methodology, Schiff's reagent, is used to assay for membrane degradation. Histochemical detection of lipid peroxidation is performed in this protocol. In brief, Schiff's reagent detects aldehydes that originate from lipid peroxides in stressful condition. Schiff's reagent is prepared and applied to plants tissue. After the reaction, plant tissue samples are rinsed with a sulfite solution to retain the staining color. From this analysis, qualitative visualization of lipid peroxidation in plant tissue is observed in the form of magenta coloration. This reagent is useful for visualization of stress induced lipid peroxidation in plants. In this protocol, Indica rice root, Assam tea root and Indian mustard seedlings are used for demonstration.

16.
Curr Biol ; 28(7): 1027-1038.e4, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29551411

RESUMO

Neurons are highly polarized cells that require continuous turnover of membrane proteins at axon terminals to develop, function, and survive. Yet, it is still unclear whether membrane protein degradation requires transport back to the cell body or whether degradation also occurs locally at the axon terminal, where live observation of sorting and degradation has remained a challenge. Here, we report direct observation of two cargo-specific membrane protein degradation mechanisms at axon terminals based on a live-imaging approach in intact Drosophila brains. We show that different acidification-sensing cargo probes are sorted into distinct classes of degradative "hub" compartments for synaptic vesicle proteins and plasma membrane proteins at axon terminals. Sorting and degradation of the two cargoes in the separate hubs are molecularly distinct. Local sorting of synaptic vesicle proteins for degradation at the axon terminal is, surprisingly, Rab7 independent, whereas sorting of plasma membrane proteins is Rab7 dependent. The cathepsin-like protease CP1 is specific to synaptic vesicle hubs, and its delivery requires the vesicle SNARE neuronal synaptobrevin. Cargo separation only occurs at the axon terminal, whereas degradative compartments at the cell body are mixed. These data show that at least two local, molecularly distinct pathways sort membrane cargo for degradation specifically at the axon terminal, whereas degradation can occur both at the terminal and en route to the cell body.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Polaridade Celular , Células Cultivadas , Proteólise , Proteínas SNARE/metabolismo
17.
Autophagy ; 13(7): 1252-1253, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28537477

RESUMO

Although the autophagy-related (ATG) conjugation systems are thought to be important for a late step of autophagosome formation, their precise function has been poorly understood because they are also required for localization of the most important autophagosomal marker LC3. In our recent study we found that, using the autophagosomal SNARE STX17 (syntaxin 17) as an alternative marker, autophagosome-like structures were generated in ATG conjugation system-deficient cells. Those structures could fuse with lysosomes but the degradation of the inner autophagosomal membrane was significantly delayed. We suggest that the ATG conjugation-dependent closure of autophagosomes causes the inner autophagosomal membrane to become sensitive to lysosomal degradation.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Membranas Intracelulares/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/análise , Lisossomos/metabolismo , Proteínas Qa-SNARE/análise
18.
J Mol Biol ; 429(7): 977-986, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28283404

RESUMO

Phospholipases are abundant in various types of cells and compartments, where they play key roles in physiological processes as diverse as digestion, cell proliferation, and neural activation. In Gram-negative bacteria, outer membrane phospholipase A (OmpLA) is involved in outer-membrane lipid homeostasis and bacterial virulence. Although the enzymatic activity of OmpLA can be probed with an assay relying on an artificial monoacyl thioester substrate, only little is known about its activity on diacyl phospholipids. Here, we used high-speed atomic force microscopy (HS-AFM) to directly image enzymatic phospholipid degradation by OmpLA in real time. In the absence of Ca2+, reconstituted OmpLA diffused within a phospholipid bilayer without revealing any signs of phospholipase activity. Upon the addition of Ca2+, OmpLA was activated and degraded the membrane with a turnover of ~2 phospholipid molecules per second and per OmpLA dimer until most of the membrane phospholipids were hydrolyzed and the protein became tightly packed.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Microscopia de Força Atômica/métodos , Fosfolipases A1/metabolismo , Fosfolipídeos/metabolismo , Cálcio/metabolismo , Cinética , Modelos Biológicos
19.
Membranes (Basel) ; 5(4): 888-902, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26670258

RESUMO

Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

20.
Neural Regen Res ; 9(11): 1154-62, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25206775

RESUMO

Basement membrane degradation and blood-brain barrier damage appear after cerebral infarction, severely impacting neuronal and brain functioning; however, the underlying pathogenetic mechanisms remain poorly understood. In this study, we induced cerebral infarction in stroke-prone spontaneously hypertensive rats by intragastric administration of high-sodium water (1.3% NaCl) for 7 consecutive weeks. Immunohistochemical and immunofluorescence assays demonstrated that, compared with the non-infarcted contralateral hemisphere, stroke-prone spontaneously hypertensive rats on normal sodium intake and Wistar-Kyoto rats, matrix metalloproteinase-9 expression, the number of blood vessels with discontinuous collagen IV expression and microvessel density were significantly higher, and the number of continuous collagen IV-positive blood vessels was lower in the infarct border zones of stroke-prone spontaneously hypertensive rats given high-sodium water. Linear correlation analysis showed matrix metalloproteinase-9 expression was positively correlated with the number of discontinuously collagen IV-labeled blood vessels and microvessel density in cerebral infarcts of stroke-prone spontaneously hypertensive rats. These results suggest that matrix metalloproteinase-9 upregulation is associated with increased regional angiogenesis and degradation of collagen IV, the major component of the basal lamina, in stroke-prone spontaneously hypertensive rats with high-sodium water-induced focal cerebral infarction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa