Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.136
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 1-29, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472005

RESUMO

Bacterial cytoplasmic membrane vesicles provide a unique experimental system for studying active transport. Vesicles are prepared by lysis of osmotically sensitized cells (i.e., protoplasts or spheroplasts) and comprise osmotically intact, unit-membrane-bound sacs that are approximately 0.5-1.0 µm in diameter and devoid of internal structure. Their metabolic activities are restricted to those provided by the enzymes of the membrane itself, and each vesicle is functional. The energy source for accumulation of a particular substrate can be determined by studying which compounds or experimental conditions drive solute accumulation, and metabolic conversion of the transported substrate or the energy source is minimal. These properties of the vesicle system constitute a considerable advantage over intact cells, as the system provides clear definition of the reactions involved in the transport process. This discussion is not intended as a general review but is concerned with respiration-dependent active transport in membrane vesicles from Escherichia coli. Emphasis is placed on experimental observations demonstrating that respiratory energy is converted primarily into work in the form of a solute concentration gradient that is driven by a proton electrochemical gradient, as postulated by the chemiosmotic theory of Peter Mitchell.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Escherichia coli/metabolismo , Biologia Molecular/história , Transporte Biológico , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , História do Século XX , História do Século XXI , Humanos , Ácido Láctico/metabolismo , Masculino , Estados Unidos
2.
Cell ; 168(1-2): 186-199.e12, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28041851

RESUMO

Bacteriophages (phages) typically exhibit a narrow host range, yet they tremendously impact horizontal gene transfer (HGT). Here, we investigate phage dynamics in communities harboring phage-resistant (R) and sensitive (S) bacteria, a common scenario in nature. Using Bacillus subtilis and its lytic phage SPP1, we demonstrate that R cells, lacking SPP1 receptor, can be lysed by SPP1 when co-cultured with S cells. This unanticipated lysis was triggered in part by phage lytic enzymes released from nearby infected cells. Strikingly, we discovered that occasionally phages can invade R cells, a phenomenon we termed acquisition of sensitivity (ASEN). We found that ASEN is mediated by R cells transiently gaining phage attachment molecules from neighboring S cells and provide evidence that this molecular exchange is driven by membrane vesicles. Exchange of phage attachment molecules could even occur in an interspecies fashion, enabling phage adsorption to non-host species, providing an unexplored route for HGT. VIDEO ABSTRACT.


Assuntos
Fagos Bacilares/fisiologia , Bacillus subtilis/virologia , Bacteriólise , Receptores Virais/metabolismo , Bacillus/virologia , Fagos Bacilares/enzimologia , Bacillus subtilis/metabolismo , Especificidade de Hospedeiro , Staphylococcus aureus/virologia , Transdução Genética
3.
Immunity ; 55(5): 847-861.e10, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545033

RESUMO

The microbiota are vital for immune homeostasis and provide a competitive barrier to bacterial and fungal pathogens. Here, we investigated how gut commensals modulate systemic immunity and response to viral infection. Antibiotic suppression of the gut microbiota reduced systemic tonic type I interferon (IFN-I) and antiviral priming. The microbiota-driven tonic IFN-I-response was dependent on cGAS-STING but not on TLR signaling or direct host-bacteria interactions. Instead, membrane vesicles (MVs) from extracellular bacteria activated the cGAS-STING-IFN-I axis by delivering bacterial DNA into distal host cells. DNA-containing MVs from the gut microbiota were found in circulation and promoted the clearance of both DNA (herpes simplex virus type 1) and RNA (vesicular stomatitis virus) viruses in a cGAS-dependent manner. In summary, this study establishes an important role for the microbiota in peripheral cGAS-STING activation, which promotes host resistance to systemic viral infections. Moreover, it uncovers an underappreciated risk of antibiotic use during viral infections.


Assuntos
Microbioma Gastrointestinal , Herpesvirus Humano 1 , Interferon Tipo I , Viroses , Antibacterianos , Antivirais , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Nucleotidiltransferases/genética
4.
Immunity ; 50(3): 692-706.e7, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824326

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a severe form of lung fibrosis with a high mortality rate. However, the etiology of IPF remains unknown. Here, we report that alterations in lung microbiota critically promote pulmonary fibrosis pathogenesis. We found that lung microbiota was dysregulated, and the dysregulated microbiota in turn induced production of interleukin-17B (IL-17B) during bleomycin-induced mouse lung fibrosis. Either lung-microbiota depletion or IL-17B deficiency ameliorated the disease progression. IL-17B cooperated with tumor necrosis factor-α to induce expression of neutrophil-recruiting genes and T helper 17 (Th17)-cell-promoting genes. Three pulmonary commensal microbes, which belong to the genera Bacteroides and Prevotella, were identified to promote fibrotic pathogenesis through IL-17R signaling. We further defined that the outer membrane vesicles (OMVs) that were derived from the identified commensal microbes induced IL-17B production through Toll-like receptor-Myd88 adaptor signaling. Together our data demonstrate that specific pulmonary symbiotic commensals can promote lung fibrosis by regulating a profibrotic inflammatory cytokine network.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/microbiologia , Interleucina-17/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Microbiota/fisiologia , Animais , Bacteroides/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , Prevotella/metabolismo , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(24): e2219435120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276410

RESUMO

M family proteins are critical virulence determinants of Streptococci. Streptococcus equi subsp. zooepidemicus (SEZ) are Group C streptococci that cause meningitis in animals and humans. SzM, the M protein of SEZ, has been linked to SEZ brain invasion. Here, we demonstrate that SzM is important in SEZ disruption of the blood-brain barrier (BBB). SEZ release SzM-bound membrane vesicles (MVs), and endocytosis of these vesicles by human brain endothelial microvascular cells (hBMECs) results in SzM-dependent cytotoxicity. Furthermore, administration of SzM-bound MVs disrupted the murine BBB. A CRISPR screen revealed that SzM cytotoxicity in hBMECs depends on PTEN-related activation of autophagic cell death. Pharmacologic inhibition of PTEN activity prevented SEZ disruption of the murine BBB and delayed mortality. Our data show that MV delivery of SzM to host cells plays a key role in SEZ pathogenicity and suggests that MV delivery of streptococcal M family proteins is likely a common streptococcal virulence mechanism.


Assuntos
Morte Celular Autofágica , Infecções Estreptocócicas , Streptococcus equi , Humanos , Animais , Camundongos , Barreira Hematoencefálica , Antígenos de Bactérias , Streptococcus , Células Endoteliais
6.
Proc Natl Acad Sci U S A ; 119(23): e2122386119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648835

RESUMO

Pneumococcal conjugate vaccines (PCVs) used in childhood vaccination programs have resulted in replacement of vaccine-type with nonvaccine-type pneumococci in carriage and invasive pneumococcal disease (IPD). A vaccine based on highly conserved and protective pneumococcal antigens is urgently needed. Here, we performed intranasal immunization of mice with pneumococcal membrane particles (MPs) to mimic natural nasopharyngeal immunization. MP immunization gave excellent serotype-independent protection against IPD that was antibody dependent but independent of the cytotoxin pneumolysin. Using Western blotting, immunoprecipitation, mass spectrometry, and different bacterial mutants, we identified the conserved lipoproteins MalX and PrsA as the main antigens responsible for cross-protection. Additionally, we found that omitting the variable surface protein and vaccine candidate PspA from MPs enhanced protective immune responses to the conserved proteins. Our findings suggest that MPs containing MalX and PrsA could serve as a platform for pneumococcal vaccine development targeting the elderly and immunocompromised.


Assuntos
Proteínas de Bactérias , Lipoproteínas , Proteínas de Membrana , Proteínas de Membrana Transportadoras , Infecções Pneumocócicas , Vacinas Pneumocócicas , Administração Intranasal , Animais , Proteínas de Bactérias/imunologia , Membrana Celular/imunologia , Sequência Conservada , Reações Cruzadas , Humanos , Imunização/métodos , Lipoproteínas/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Sorogrupo , Streptococcus pneumoniae/imunologia
7.
Proc Natl Acad Sci U S A ; 119(11): e2109667119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275791

RESUMO

SignificanceYersinia pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. This plague bacillus has been used as a biological weapon during human history and is currently one of the deadliest biological threats. Currently, no licensed plague vaccines are available in the Western world. Since an array of immunogens are enclosed in outer membrane vesicles (OMVs), immune responses elicited by OMVs against a diverse range of antigens may reduce the likelihood of antigen circumvention. Therefore, self-adjuvanting OMVs from a remodeled Yersinia pseudotuberculosis strain as a type of plague vaccine could diversify prophylactic choices and solve current vaccine limitations.


Assuntos
Antígenos de Bactérias , Lipídeo A , Vacina contra a Peste , Peste , Proteínas Citotóxicas Formadoras de Poros , Yersinia pseudotuberculosis , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Dose Letal Mediana , Lipídeo A/genética , Lipídeo A/imunologia , Camundongos , Peste/prevenção & controle , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/genética , Vacina contra a Peste/imunologia , Plasmídeos/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/imunologia
8.
J Bacteriol ; 206(3): e0032523, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38353531

RESUMO

Streptomyces are the primary source of bioactive specialized metabolites used in research and medicine, including many antimicrobials. These are presumed to be secreted and function as freely soluble compounds. However, increasing evidence suggests that extracellular vesicles are an alternative secretion system. We assessed environmental and lab-adapted Streptomyces (sporulating filamentous actinomycetes) and found frequent production of antimicrobial vesicles. The molecular cargo included actinomycins, anthracyclines, candicidin, and actinorhodin, reflecting both diverse chemical properties and diverse antibacterial and antifungal activity. The levels of packaged antimicrobials correlated with the level of inhibitory activity of the vesicles, and a strain knocked out for the production of anthracyclines produced vesicles that lacked antimicrobial activity. We demonstrated that antimicrobial containing vesicles achieve direct delivery of the cargo to other microbes. Notably, this delivery via membrane fusion occurred to a broad range of microbes, including pathogenic bacteria and yeast. Vesicle encapsulation offers a broad and permissive packaging and delivery system for antimicrobial specialized metabolites, with important implications for ecology and translation.IMPORTANCEExtracellular vesicle encapsulation changes our picture of how antimicrobial metabolites function in the environment and provides an alternative translational approach for the delivery of antimicrobials. We find many Streptomyces strains are capable of releasing antimicrobial vesicles, and at least four distinct classes of compounds can be packaged, suggesting this is widespread in nature. This is a striking departure from the primary paradigm of the secretion and action of specialized metabolites as soluble compounds. Importantly, the vesicles deliver antimicrobial metabolites directly to other microbes via membrane fusion, including pathogenic bacteria and yeast. This suggests future applications in which lipid-encapsulated natural product antibiotics and antifungals could be used to solve some of the most pressing problems in drug resistance.


Assuntos
Anti-Infecciosos , Vesículas Extracelulares , Streptomyces , Streptomyces/genética , Saccharomyces cerevisiae , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antraciclinas/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440830

RESUMO

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Fibrose Cística/tratamento farmacológico , Animais , Tobramicina/farmacologia , Humanos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-8/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/microbiologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar
10.
Small ; : e2400847, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801399

RESUMO

In the realm of thrombosis treatment, bioengineered outer membrane vesicles (OMVs) offer a novel and promising approach, as they have rich content of bacterial-derived components. This study centers on OMVs derived from Escherichia coli BL21 cells, innovatively engineered to encapsulate the staphylokinase-hirudin fusion protein (SFH). SFH synergizes the properties of staphylokinase (SAK) and hirudin (HV) to enhance thrombolytic efficiency while reducing the risks associated with re-embolization and bleeding. Building on this foundation, this study introduces two cutting-edge microrobotic platforms: SFH-OMV@H for venous thromboembolism (VTE) treatment, and SFH-OMV@MΦ, designed specifically for cerebral venous sinus thrombosis (CVST) therapy. These platforms have demonstrated significant efficacy in dissolving thrombi, with SFH-OMV@H showcasing precise vascular navigation and SFH-OMV@MΦ effectively targeting cerebral thrombi. The study shows that the integration of these bioengineered OMVs and microrobotic systems marks a significant advancement in thrombosis treatment, underlining their potential to revolutionize personalized medical approaches to complex health conditions.

11.
Small ; 20(15): e2307066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009518

RESUMO

A new Yersinia pseudotuberculosis mutant strain, YptbS46, carrying the lpxE insertion and pmrF-J deletion is constructed and shown to exclusively produce monophosphoryl lipid A (MPLA) having adjuvant properties. Outer membrane vesicles (OMVs) isolated from YptbS46 harboring an lcrV expression plasmid, pSMV13, are designated OMV46-LcrV, which contained MPLA and high amounts of LcrV (Low Calcium response V) and displayed low activation of Toll-like receptor 4 (TLR4). Intramuscular prime-boost immunization with 30 µg of of OMV46-LcrV exhibited substantially reduced reactogenicity than the parent OMV44-LcrV and conferred complete protection to mice against a high-dose of respiratory Y. pestis challenge. OMV46-LcrV immunization induced robust adaptive responses in both lung mucosal and systemic compartments and orchestrated innate immunity in the lung, which are correlated with rapid bacterial clearance and unremarkable lung damage during Y. pestis challenge. Additionally, OMV46-LcrV immunization conferred long-term protection. Moreover, immunization with reduced doses of OMV46-LcrV exhibited further lower reactogenicity and still provided great protection against pneumonic plague. The studies strongly demonstrate the feasibility of OMV46-LcrV as a new type of plague vaccine candidate.


Assuntos
Lipídeo A/análogos & derivados , Vacina contra a Peste , Peste , Yersinia pestis , Camundongos , Animais , Yersinia , Peste/prevenção & controle , Antígenos de Bactérias
12.
Small ; : e2311702, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456371

RESUMO

The PD1/PD-L1 immune checkpoint blocking is a promising therapy, while immunosuppressive tumor microenvironment (TME) and poor tumor penetration of therapeutic antibodies limit its efficacy. Repolarization of tumor-associated macrophages (TAMs) offers a potential method to ameliorate immunosuppression of TME and further boost T cell antitumor immunity. Herein, hybrid cell membrane biomimetic nanovesicles (hNVs) are developed by fusing M1 macrophage-derived nanovesicles (M1-NVs) and PD1-overexpressed tumor cell-derived nanovesicles (PD1-NVs) to improve cancer immunotherapy. The M1-NVs promote the transformation of M2-like TAMs to M1-like phenotype and further increase the release of pro-inflammatory cytokines, resulting in improved immunosuppressive TME. Concurrently, the PD1-NVs block PD1/PD-L1 pathway, which boosts cancer immunotherapy when combined with M1-NVs. In a breast cancer mouse model, the hNVs efficiently accumulate at the tumor site after intravenous injection and significantly inhibit the tumor growth. Mechanically, the M1 macrophages and CD8+ T lymphocytes in TME increase by twofold after the treatment, indicating effective immune activation. These results suggest the hNVs as a promising strategy to integrate TME improvement with PD1/PD-L1 blockade for cancer immunotherapy.

13.
Small ; 20(20): e2308680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225709

RESUMO

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Assuntos
Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2 , Exossomos , Alho , Microbioma Gastrointestinal , Nanopartículas , Diabetes Mellitus Tipo 2/metabolismo , Alho/química , Animais , Nanopartículas/química , Exossomos/metabolismo , Camundongos , Akkermansia , Humanos , Masculino , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologia
14.
J Virol ; 97(5): e0199222, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37133381

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to cell surface receptors and is activated for membrane fusion and cell entry via proteolytic cleavage. Phenomenological data have shown that SARS-CoV-2 can be activated for entry at either the cell surface or in endosomes, but the relative roles in different cell types and mechanisms of entry have been debated. Here, we used single-virus fusion experiments and exogenously controlled proteases to probe activation directly. We found that plasma membrane and an appropriate protease are sufficient to support SARS-CoV-2 pseudovirus fusion. Furthermore, fusion kinetics of SARS-CoV-2 pseudoviruses are indistinguishable no matter which of a broad range of proteases is used to activate the virus. This suggests that the fusion mechanism is insensitive to protease identity or even whether activation occurs before or after receptor binding. These data support a model for opportunistic fusion by SARS-CoV-2 in which the subcellular location of entry likely depends on the differential activity of airway, cellsurface, and endosomal proteases, but all support infection. Inhibition of any single host protease may thus reduce infection in some cells but may be less clinically robust. IMPORTANCE SARS-CoV-2 can use multiple pathways to infect cells, as demonstrated recently when new viral variants switched dominant infection pathways. Here, we used single-virus fusion experiments together with biochemical reconstitution to show that these multiple pathways coexist simultaneously and specifically that the virus can be activated by different proteases in different cellular compartments with mechanistically identical effects. The consequences of this are that the virus is evolutionarily plastic and that therapies targeting viral entry should address multiple pathways at once to achieve optimal clinical effects.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Membrana Celular/metabolismo , COVID-19/virologia , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
15.
Appl Environ Microbiol ; : e0024724, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888338

RESUMO

The aim of this study was to identify a Bifidobacterium strain that improves the performance of Limosilactobacillus reuteri DSM 17938. Initial tests showed that Bifidobacterium longum subsp. longum strains boosted the growth of DSM 17938 during in vivo-like conditions. Further characterization revealed that one of the strains, BG-L47, had better bile and acid tolerance compared to BG-L48, as well as mucus adhesion compared to both BG-L48 and the control strain BB536. BG-L47 also had the capacity to metabolize a broad range of carbohydrates and sugar alcohols. Mapping of glycoside hydrolase (GH) genes of BG-L47 and BB536 revealed many GHs associated with plant-fiber utilization. However, BG-L47 had a broader phenotypic fiber utilization capacity. In addition, B. longum subsp. longum cells boosted the bioactivity of extracellular membrane vesicles (MV) produced by L. reuteri DSM 17938 during co-cultivation. Secreted 5'-nucleotidase (5'NT), an enzyme that converts AMP into the signal molecule adenosine, was increased in MV boosted by BG-L47. The MV exerted an improved antagonistic effect on the pain receptor transient receptor potential vanilloid 1 (TRPV1) and increased the expression of the immune development markers IL-6 and IL-1ß in a peripheral blood mononuclear cell (PBMC) model. Finally, the safety of BG-L47 was evaluated both by genome safety assessment and in a human safety study. Microbiota analysis showed that the treatment did not induce significant changes in the composition. In conclusion, B. longum subsp. longum BG-L47 has favorable physiological properties, can boost the in vitro activity of L. reuteri DSM 17938, and is safe for consumption, making it a candidate for further evaluation in probiotic studies. IMPORTANCE: By using probiotics that contain a combination of strains with synergistic properties, the likelihood of achieving beneficial interactions with the host can increase. In this study, we first performed a broad screening of Bifidobacterium longum subsp. longum strains in terms of synergistic potential and physiological properties. We identified a superior strain, BG-L47, with favorable characteristics and potential to boost the activity of the known probiotic strain Limosilactobacillus reuteri DSM 17938. Furthermore, we demonstrated that BG-L47 is safe for consumption in a human randomized clinical study and by performing a genome safety assessment. This work illustrates that bacteria-bacteria interactions differ at the strain level and further provides a strategy for finding and selecting companion strains of probiotics.

16.
Crit Rev Microbiol ; 50(2): 127-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36597758

RESUMO

The cause of Alzheimer's disease (AD), and the pathophysiological mechanisms involved, remain major unanswered questions in medical science. Oral bacteria, especially those species associated with chronic periodontitis and particularly Porphyromonas gingivalis, are being linked causally to AD pathophysiology in a subpopulation of susceptible individuals. P. gingivalis produces large amounts of proteolytic enzymes, haem and iron capture proteins, adhesins and internalins that are secreted and attached to the cell surface and concentrated onto outer membrane vesicles (OMVs). These enzymes and adhesive proteins have been shown to cause host tissue damage and stimulate inflammatory responses. The ecological and pathophysiological roles of P. gingivalis OMVs, their ability to disperse widely throughout the host and deliver functional proteins lead to the proposal that they may be the link between a P. gingivalis focal infection in the subgingivae during periodontitis and neurodegeneration in AD. P. gingivalis OMVs can cross the blood brain barrier and may accelerate AD-specific neuropathology by increasing neuroinflammation, plaque/tangle formation and dysregulation of iron homeostasis, thereby inducing ferroptosis leading to neuronal death and neurodegeneration.


Assuntos
Doença de Alzheimer , Periodontite , Humanos , Porphyromonas gingivalis/genética , Adesinas Bacterianas/metabolismo , Periodontite/microbiologia , Ferro
17.
Microb Pathog ; 193: 106749, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879140

RESUMO

Bacteria-derived outer membrane vesicles (OMVs) can be engineered to incorporate foreign antigens. This study explored the potential of ClearColi™-derived OMVs as a natural adjuvant and a carrier (recombinant OMVs or rOMVs) for development of an innovative therapeutic vaccine candidate harboring HIV-1 Nef and Nef-Tat antigens. Herein, the rOMVs containing CytolysinA (ClyA)-Nef and ClyA-Nef-Tat fusion proteins were isolated from ClearColi™ strain. The presence of Nef and Nef-Tat proteins on their surface (rOMVNef and rOMVNef-Tat) was confirmed by western blotting after proteinase K treatment. Immune responses induced by Nef and Nef-Tat proteins emulsified with Montanide® ISA720 or mixed with OMVs, and also rOMVNef and rOMVNef-Tat were investigated in BALB/c mice. Additionally, the potency of splenocytes exposed to single-cycle replicable (SCR) HIV-1 virions was assessed for the secretion of cytokines in vitro. Our findings showed that the rOMVs as an antigen carrier (rOMVNef and rOMVNef-Tat) induced higher levels of IgG2a, IFN-γ and granzyme B compared to OMVs as an adjuvant (Nef + OMV and Nef-Tat + OMV), and also Montanide® ISA720 (Nef + Montanide and Nef-Tat + Montanide). Moreover, IFN-γ level in splenocytes isolated from mice immunized with rOMVNef-Tat was higher than other regimens after exposure to SCR virions. Generally, ClearColi™-derived rOMVs can serve as potent carriers for developing effective vaccines against HIV-1 infection.


Assuntos
Vacinas contra a AIDS , Adjuvantes Imunológicos , Infecções por HIV , HIV-1 , Camundongos Endogâmicos BALB C , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Animais , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/genética , HIV-1/genética , HIV-1/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Infecções por HIV/prevenção & controle , Infecções por HIV/imunologia , Feminino , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologia , Citocinas/metabolismo , Imunoglobulina G/sangue , Anticorpos Anti-HIV/imunologia , Membrana Externa Bacteriana/metabolismo , Desenvolvimento de Vacinas , Humanos , Portadores de Fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Baço/imunologia
18.
Microb Pathog ; 188: 106562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307370

RESUMO

Bacterial outer membrane vesicles (OMVs) can package and deliver virulence factors into host cells, which is an important mechanism mediating host-pathogen interactions. It has been reported that small RNAs (sRNAs) can be packed into OMVs with varying relative abundance, which might affect the function and/or stability of host mRNAs. In this study, we used OptiPrep density gradient ultra-high-speed centrifugation to purify OMVs from Pseudomonas aeruginosa. Next, the sequences and abundance of sRNAs were detected by using Small RNA-Seq. In particular, sRNA4518698, sRNA2316613 and sRNA809738 were the three most abundant sRNAs in OMVs, which are all fragments of P. aeruginosa non-coding RNAs. sRNAs were shielded within the interior of OMVs and remained resistant to external RNase cleavage. The miRanda and RNAhybrid analysis demonstrated that those sRNAs could target a large number of host mRNAs, which were enriched in host immune responses by the functions of GO and KEGG enrichment. Experimentally, we demonstrated that the transfection of synthetic sRNA4518698, sRNA2316613, or sRNA809738 could reduce the expression of innate immune response genes in RAW264.7 cells. Together, we demonstrated that P. aeruginosa OMVs sRNAs can regulate innate immune responses. This study uncovered a mechanism in which the OMVs regulate host responses by transferring bacterial sRNAs.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/microbiologia , Imunidade Inata , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Interações Hospedeiro-Patógeno , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Stem Cells ; 41(5): 468-481, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827175

RESUMO

Mesenchymal stem cells (MSCs) therapy could efficiently attenuate LPS-induced acute lung injury and Pseudomonas aeruginosa (PA)-induced acute pneumonia. However, the underlying molecular mechanisms are still elusive. Here, we report that PA-derived outer membrane vesicles (OMVs) trigger mouse primary adipose tissue-derived mesenchymal stem cells (ASCs) to upregulate cyclic GMP-AMP synthase (cGAS) for sensing of double-stranded DNA (dsDNA) and the expression of interleukin (IL)-7. Loss of cGAS-interferon (IFN)-ß axis abolished the protective function of ASCs to PA-induced acute pneumonia in mice. Mechanistically, OMVs-delivered PA dsDNA primes cGAS-stimulator of interferon genes (STING) signaling pathway and increases the IL-7 production in ASCs via IFN-ß signaling. Meanwhile, dsDNA-primed ASCs furthermore amplifies IL-7 expression in primary lung epithelial cells and mouse lung epithelial (MLE)-12 cell line via increased IFN-ß. Our findings thus implicate a molecular mechanism that ASCs recognize PA-OMVs-derived dsDNA to secrete IL-7 via activating cGAS, suggesting a potential therapeutic strategy of ASCs transfer for PA-induced lung infection and inflammation.


Assuntos
Interferon Tipo I , Pneumonia , Camundongos , Animais , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Interleucina-7 , Proteínas de Membrana/genética , Interferon Tipo I/metabolismo , DNA/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pneumonia/terapia
20.
Trends Immunol ; 42(11): 1024-1036, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635395

RESUMO

All Gram-negative bacteria produce outer membrane vesicles (OMVs) which are minute spherical structures emanating from the bacterial outer membrane. OMVs are primarily enriched in lipopolysaccharide (LPS) and phospholipids, as well as outer membrane and periplasmic proteins. Recent research has provided convincing evidence for their role in multiple aspects of bacterial physiology and their interaction with vertebrate host cells. OMVs play vital roles in bacterial colonization, delivery of virulence factors, and disease pathogenesis. Here, we discuss the interactions of OMVs with mammalian host cells with a focus on how bacteria use OMVs to modulate host immune responses that eventually enable bacteria to evade host immunity.


Assuntos
Membrana Externa Bacteriana , Bactérias Gram-Negativas , Animais , Bactérias , Bactérias Gram-Negativas/metabolismo , Humanos , Lipopolissacarídeos , Mamíferos , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa