Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 122(1): 195-200, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36378331

RESUMO

Plasmodium knowlesi is a simian malaria parasite that causes significant zoonotic infections in Southeast Asia, particularly in Malaysia. The Plasmodium thrombospondin-related apical merozoite protein (TRAMP) plays an essential role in the invasion of the parasite into its host erythrocyte. The present study investigated the genetic polymorphism and natural selection of the full length PkTRAMP from P. knowlesi clinical isolates from Malaysia. Blood samples (n = 40) were collected from P. knowlesi malaria patients from Peninsular Malaysia and Malaysian Borneo. The PkTRAMP gene was amplified using PCR, followed by cloning into a plasmid vector and sequenced. Results showed that the nucleotide diversity of PkTRAMP was low (π: 0.009). Z-test results indicated negative (purifying) selection of PkTRAMP. The alignment of the deduced amino acid sequences of PkTRAMP of Peninsular Malaysia and Malaysian Borneo revealed 38 dimorphic sites. A total of 27 haplotypes were identified from the amino acid sequence alignment. Haplotype analysis revealed that there was no clustering of PkTRAMP from Peninsular Malaysia and Malaysian Borneo.


Assuntos
Malária , Plasmodium knowlesi , Humanos , Variação Genética , Malária/parasitologia , Malásia , Merozoítos/metabolismo , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Polimorfismo Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
Biochem Biophys Res Commun ; 534: 86-93, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316544

RESUMO

This work describes a methodology for developing a minimal, subunit-based, multi-epitope, multi-stage, chemically-synthesised, anti-Plasmodium falciparum malaria vaccine. Some modified high activity binding peptides (mHABPs) derived from functionally relevant P. falciparum MSP, RH5 and AMA-1 conserved amino acid regions (cHABPs) for parasite binding to and invasion of red blood cells (RBC) were selected. They were highly immunogenic as assessed by indirect immunofluorescence (IFA) and Western blot (WB) assays and protective immune response-inducers against malarial challenge in the Aotus monkey experimental model. NetMHCIIpan 4.0 was used for predicting peptide-Aotus/human major histocompatibility class II (MHCII) binding affinity in silico due to the similarity between Aotus and human immune system molecules; ∼50% of Aotus MHCII allele molecules have a counterpart in the human immune system, being Aotus-specific, whilst others enabled recognition of their human counterparts. Some peptides' 1H-NMR-assessed structural conformation was determined to explain residue modifications in mHABPs inducing secondary structure changes. These directly influenced immunological behaviour, thereby highlighting the relationship with MHCII antigen presentation. The data obtained in such functional, immunological, structural and predictive approach suggested that some of these peptides could be excellent components of a fully-protective antimalarial vaccine.


Assuntos
Eritrócitos/parasitologia , Vacinas Antimaláricas/farmacologia , Plasmodium falciparum/patogenicidade , Animais , Antígenos de Protozoários/química , Aotidae , Proteínas de Transporte/química , Epitopos , Eritrócitos/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/metabolismo , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Peptídeos/imunologia , Peptídeos/metabolismo , Proteínas de Protozoários/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia
3.
Front Immunol ; 14: 1161301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197657

RESUMO

Background: Naturally acquired immunity to malaria may involve different immune mechanisms working in concert, however, their respective contributions and potential antigenic targets have not been clearly established. Here, we assessed the roles of opsonic phagocytosis and antibody-mediated merozoite growth inhibition in Plasmodium falciparum (P. falciparum) infection outcomes in Ghanaian children. Methods: The levels of merozoite opsonic phagocytosis, growth inhibition activities and six P. falciparum antigen-specific IgG of plasma samples from children (n=238, aged 0.5 to 13 years) were measured at baseline prior to the malaria seasons in southern Ghana. The children were then actively and passively followed up for febrile malaria and asymptomatic P. falciparum infection detection in a 50-week longitudinal cohort. P. falciparum infection outcome was modelled as a function of the measured immune parameters while accounting for important demographic factors. Results: High plasma activity of opsonic phagocytosis [adjusted odds ratio (aOR)= 0.16; 95%CI= 0.05 - 0.50, p = 0.002], and growth inhibition (aOR=0.15; 95% CI = 0.04-0.47; p = 0.001) were individually associated with protection against febrile malaria. There was no evidence of correlation (b= 0.13; 95% CI= -0.04-0.30; p=0.14) between the two assays. IgG antibodies against MSPDBL1 correlated with opsonic phagocytosis (OP) while IgG against PfRh2a correlated with growth inhibition. Notably, IgG antibodies against RON4 correlated with both assays. Conclusion: Opsonic phagocytosis and growth inhibition are protective immune mechanisms against malaria that may be acting independently to confer overall protection. Vaccines incorporating RON4 may benefit from both immune mechanisms.


Assuntos
Malária Falciparum , Malária , Animais , Humanos , Criança , Gana , Merozoítos , Antígenos de Protozoários , Proteínas de Protozoários , Anticorpos Antiprotozoários , Fagocitose , Imunoglobulina G , Febre , Infecções Assintomáticas
4.
Genes (Basel) ; 12(1)2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379267

RESUMO

Plasmodium vivax Cysteine-Rich Protective Antigen (CyRPA) is a merozoite protein participating in the parasite invasion of human reticulocytes. During natural P. vivax infection, antibody responses against PvCyRPA have been detected. In children, low anti-CyRPA antibody titers correlated with clinical protection, which suggests this protein as a potential vaccine candidate. This work analyzed the genetic and amino acid diversity of pvcyrpa in Mexican and global parasites. Consensus coding sequences of pvcyrpa were obtained from seven isolates. Other sequences were extracted from a repository. Maximum likelihood phylogenetic trees, genetic diversity parameters, linkage disequilibrium (LD), and neutrality tests were analyzed, and the potential amino acid polymorphism participation in B-cell epitopes was investigated. In 22 sequences from Southern Mexico, two synonymous and 21 nonsynonymous mutations defined nine private haplotypes. These parasites had the highest LD-R2 index and the lowest nucleotide diversity compared to isolates from South America or Asia. The nucleotide diversity and Tajima's D values varied across the coding gene. The exon-1 sequence had greater diversity and Rm values than those of exon-2. Exon-1 had significant positive values for Tajima's D, ß-α values, and for the Z (HA: dN > dS) and MK tests. These patterns were similar for parasites of different origin. The polymorphic amino acid residues at PvCyRPA resembled the conformational B-cell peptides reported in PfCyRPA. Diversity at pvcyrpa exon-1 is caused by mutation and recombination. This seems to be maintained by balancing selection, likely due to selective immune pressure, all of which merit further study.


Assuntos
Antígenos de Protozoários/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Recombinação Genética/imunologia , Seleção Genética/imunologia , Antígenos de Protozoários/imunologia , Cisteína/genética , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Éxons/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Malária Vivax/imunologia , Malária Vivax/parasitologia , Mutação , Plasmodium vivax/imunologia , Plasmodium vivax/patogenicidade , Polimorfismo Genético/imunologia , Proteínas de Protozoários/imunologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa