Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232511

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial fibrotic disease that leads to disability and death within 5 years of diagnosis. Pulmonary fibrosis is a disease with a multifactorial etiology. The concept of aberrant regeneration of the pulmonary epithelium reveals the pathogenesis of IPF, according to which repeated damage and death of alveolar epithelial cells is the main mechanism leading to the development of progressive IPF. Cell death provokes the migration, proliferation and activation of fibroblasts, which overproduce extracellular matrix, resulting in fibrotic deformity of the lung tissue. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for pulmonary fibrosis. MSCs, and EVs derived from MSCs, modulate the activity of immune cells, inhibit the expression of profibrotic genes, reduce collagen deposition and promote the repair of damaged lung tissue. This review considers the molecular mechanisms of the development of IPF and the multifaceted role of MSCs in the therapy of IPF. Currently, EVs-MSCs are regarded as a promising cell-free therapy tool, so in this review we discuss the results available to date of the use of EVs-MSCs for lung tissue repair.


Assuntos
Vesículas Extracelulares , Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Pulmão/patologia , Células-Tronco Mesenquimais/metabolismo
2.
BMC Cancer ; 21(1): 349, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794833

RESUMO

BACKGROUND: Immunotherapy has been recently established as a new direction for the treatment of colorectal cancer (CRC), a gastrointestinal cancer. In this investigation, we aimed to expound how the posttranscriptional regulation modulated by microRNA-222 (miR-222) from mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) affected the AKT pathway and the immune escape in CRC. METHODS: CRC cell malignant phenotype, including proliferation, migration, invasion, and apoptosis, was firstly detected after co-culture with MSC-EVs. miRNAs with differential changes in CRC cells before and after EVs treatment were filtered by microarray analysis. miR-222 was then downregulated to examine its role in CRC cells in response to EVs. Cells were implanted in mice to induce xenograft tumors, and infiltrating T cells was assessed by immunohistochemistry. The mRNA microarray was used to screen target genes, followed by rescue experiments. ChIP and western blot were conducted to validate the downstream biomolecule of ATF3. RESULTS: After treatment of CRC cells with MSC-EVs, the expression of miR-222 was upregulated, and cell activity was increased. Inhibition of miR-222 decreased CRC malignant aggressiveness in vitro and reduced tumorigenesis and immune escape in vivo. miR-222 targeted and bound to ATF3. Downregulation of ATF3 enhanced CRC cell malignant aggressiveness, tumorigenic capacity and immune escape. Mechanistically, ATF3 inhibited AKT1 transcription and mediated the AKT pathway. CONCLUSION: MSC-EVs carry miR-222 to promote CRC cell malignant aggressiveness and immune escape. miR-222 targets and binds to ATF3, which inhibits AKT1 transcriptional activity and thereby mediates the AKT pathway.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Neoplasias Colorretais/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fator 3 Ativador da Transcrição/genética , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Nus , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Kaohsiung J Med Sci ; 40(1): 46-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37885317

RESUMO

Cardiac remodeling is manifested by hypertrophy and apoptosis of cardiomyocytes, resulting in the progression of cardiovascular diseases. Long noncoding RNAs (lncRNAs) serve as modifiers of cardiac remodeling. In this study, we aimed to explore the molecular mechanism of H19 shuttled by mesenchymal stem cells (MSC)-derived extracellular vesicles (EV) in cardiac remodeling upon heart failure (HF). Using the GEO database, H19, microRNA (miR)-29b-3p, and CDC42 were screened out as differentially expressed biomolecules in HF. H19 and CDC42 were elevated, and miR-29b-3p was decreased after MSC-EV treatment in rats subjected to ligation of the coronary artery. MSC-EV alleviated myocardial injury in rats with HF. H19 downregulation exacerbated myocardial injury, while miR-29b-3p inhibitor alleviated myocardial injury. By contrast, CDC42 downregulation aggravated the myocardial injury again. PI3K/AKT pathway was activated by MSC-EV. These findings provide insights into how H19 shuttled by EV mitigates cardiac remodeling through a competitive endogenous RNA network regarding miR-29b-3p and CDC42.


Assuntos
Vesículas Extracelulares , Insuficiência Cardíaca , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Linhagem Celular , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Remodelação Ventricular , MicroRNAs/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo
4.
Brain Res Bull ; 172: 220-228, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932490

RESUMO

OBJECTIVE: We aim to explore the protective effect of bone marrow mesenchymal stem cells (BMSCs)-derived exosomal microRNA-221-3p (miR-221-3p) on ischemic stroke (IS) by targeting activating transcription factor 3 (ATF3). METHODS: The middle cerebral artery occlusion (MCAO) mice model and oxygen-glucose deprivation (OGD) neuron model were established. Extracellular vesicles were isolated from BMSCs (BMSC-EVs) and transfected with altered miR-221-3p or ATF3 to treat the MCAO mice and OGD-treated neurons. MiR-221-3p and ATF3 expression were determined, and the contents of inflammatory factors were detected. The pathological changes and apoptosis in mice brain tissues were observed. In cellular experiments, the viability and apoptosis of OGD-treated neurons were evaluated. Binding relationship between miR-221-3p and ATF3 was determined. RESULTS: MiR-221-3p was down-regulated and ATF3 was up-regulated in MCAO mice and OGD-treated neurons. BMSC-EVs and BMSC-EVs carrying up-regulated miR-221-3p attenuated inflammation, pathological changes and apoptosis in MCAO mice brain tissues, and also promoted viability and repressed apoptosis of OGD-treated neurons. ATF3 was verified as a target of miR-221-3p. CONCLUSION: BMSC-EVs carrying miR-221-3p protect against IS by inhibiting ATF3. This study may be helpful for exploring therapeutic strategies of IS.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Vesículas Extracelulares/metabolismo , AVC Isquêmico/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células HEK293 , Humanos , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa