Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Anim Ecol ; 92(5): 957-964, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37132260

RESUMO

Stream-dwelling communities are expected to show a gradual replacement of the dominant feeding types following the type of resources found along the river continuum. Yet, the underlying longitudinal gradients in food web structure and energy flow-paths remain poorly understood. Here, I synthesise novel research on the River Continuum Concept (RCC) and identify promising areas for future research linked to longitudinal changes in food-chain length and energy mobilisation routes. For example, feeding links and connectance should reach maximum values in mid-order rivers and then decrease to river mouths following uncovered longitudinal diversity patterns. Regarding energy mobilisation routes, a gradual replacement in the food web fuelling between allochthonous (leaf litter) and autochthonous (periphyton) resources should be expected. Beyond longitudinal changes in primary basal resource to consumer paths, other allochthonous (e.g. riparian arthropod inputs) and autochthonous (e.g. fish prey) inputs subsidising higher level consumers may show longitudinal changes, that is, terrestrial invertebrates decreasing but piscivory increasing downstream. However, the role of these inputs, that can alter predator niche variation and have indirect community-based effects, on both food web structure and energy flow-paths along the river continuum is not clear yet. Incorporating energy mobilisation and food web structure into RCC principles is necessary for a broad understanding of ecosystem functioning and trophic diversity in riverine systems, driving the emergence of novel insights. How function and structure of riverine food webs adapt to longitudinal changes in physical and biological environments represent a challenge for next generation of stream ecologists.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Cadeia Alimentar , Ecossistema , Ecologia , Invertebrados
2.
Ecol Indic ; 73: 118-127, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31413664

RESUMO

Ecosystems provide a variety of ecosystem services (ES), which act as key linkages between social and ecological systems. ES respond spatially and temporally to abiotic and biotic variation, and to management. Thus, resistant and resilient ES provision is expected to remain within a stable range when facing disturbances. In this study, generic indicators to evaluate resistance, potential resilience and capacity for transformation of ES provision are developed and their relevance demonstrated for a mountain grassland system. Indicators are based on plant trait composition (i.e. functional composition) and abiotic parameters determining ES provision at community, meta-community and landscape scales. First the resistance of an ES is indicated by its normal operating range characterized by observed values under current conditions. Second its resilience is assessed by its potential operating range - under hypotheses of reassembly from the community's species pool. Third its transformation potential is assessed for reassembly at meta-community and landscape scales. Using a state-and-transition model, possible management-related transitions between mountain grassland states were identified, and indicators calculated for two provisioning and two regulating ES. Overall, resilience properties varied across individual ES, supporting a focus on resilience of specific ES. The resilience potential of the two provisioning services was greater than for the two regulating services, both being linked to functional complementarity within communities. We also found high transformation potential reflecting functional redundancy among communities within each meta-community, and across meta-communities in the landscape. Presented indicators are promising for the projection of future ES provision and the identification of management options under environmental change.

3.
Ecol Lett ; 21(4): 484-493, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29368364

RESUMO

Mutualistic interactions repeatedly preserved across fragmented landscapes can scale-up to form a spatial metanetwork describing the distribution of interactions across patches. We explored the structure of a bird seed-dispersal (BSD) metanetwork in 16 Neotropical forest fragments to test whether a distinct subset of BSD-interactions may mediate landscape functional connectivity. The metanetwork is interaction-rich, modular and poorly connected, showing high beta-diversity and turnover of species and interactions. Interactions involving large-sized species were lost in fragments < 10 000 ha, indicating a strong filtering by habitat fragmentation on the functional diversity of BSD-interactions. Persistent interactions were performed by small-seeded, fast growing plant species and by generalist, small-bodied bird species able to cross the fragmented landscape. This reduced subset of interactions forms the metanetwork components persisting to defaunation and fragmentation, and may generate long-term deficits of carbon storage while delaying forest regeneration at the landscape level.


Assuntos
Florestas , Dispersão de Sementes , Animais , Aves , Ecossistema , Sementes , Árvores
4.
Ecol Lett ; 20(8): 1004-1013, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28664680

RESUMO

Natural ecosystems are shaped along two fundamental axes, space and time, but how biodiversity is partitioned along both axes is not well understood. Here, we show that the relationship between temporal and spatial biodiversity patterns can vary predictably according to habitat characteristics. By quantifying seasonal and annual changes in larval dragonfly communities across a natural predation gradient we demonstrate that variation in the identity of top predator species is associated with systematic differences in spatio-temporal ß-diversity patterns, leading to consistent differences in relative partitioning of biodiversity between time and space across habitats. As the size of top predators increased (from invertebrates to fish) habitats showed lower species turnover across sites and years, but relatively larger seasonal turnover within a site, which ultimately shifted the relative partitioning of biodiversity across time and space. These results extend community assembly theory by identifying common mechanisms that link spatial and temporal patterns of ß-diversity.


Assuntos
Biodiversidade , Odonatos , Animais , Ecossistema , Peixes , Cadeia Alimentar , Invertebrados , Comportamento Predatório
5.
BMC Ecol ; 16: 23, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118474

RESUMO

BACKGROUND: Worldwide, natural communities are invaded by non-native species, with potentially devastating effects on the native communities. A large part of past research aimed at finding traits and characteristics of the invading species or the invaded community explaining observed invasions. Only recently, the focus shifted on the spatial patterns during invasions per se. Empirical data, however, are limited, as invasions are often unique incidences of a complex spatio-temporal process. In order to identify generalities of invasion patterns, we studied 13 naturally replicated tributary streams draining into Lake Constance, and studied the occurrence of native and non-native amphipods along linear transects from the stream outlets to the upstream headwater reaches. RESULTS: We found repeated spatial patterns of community composition and the occurrence of native and non-native amphipod species across two different years. Specifically, occurrence as well as abundance of two non-native amphipod species decreased from the stream outlets at the lake site towards upstream headwater reaches. Populations of the most common native amphipod species were largest at the uppermost headwater reaches. All populations of this native species, however, showed significant signals of recent genetic bottlenecks, irrespective of the stream position and occurrence of non-native species. Contrary to our expectations, this native species also showed no longitudinal genetic differentiation within individual tributaries as postulated for headwater versus outlet populations. CONCLUSIONS: Our results indicate that invasions of river-systems may overall follow predictable patterns on the level of spatial distributions and community composition. However, effects of invading organisms on the genetic diversity and genetic structure of native populations observed at larger scales may not necessarily be directly reflected at the scale of smaller tributaries.


Assuntos
Anfípodes/genética , Biodiversidade , Espécies Introduzidas , Rios , Animais , Ecossistema
6.
Proc Biol Sci ; 281(1778): 20132637, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24430846

RESUMO

The order of species arrival during community assembly can greatly affect species coexistence, but the strength of these effects, known as priority effects, appears highly variable across species and ecosystems. Furthermore, the causes of this variation remain unclear despite their fundamental importance in understanding species coexistence. Here, we show that one potential cause is environmental variability. In laboratory experiments using nectar-inhabiting microorganisms as a model system, we manipulated spatial and temporal variability of temperature, and examined consequences for priority effects. If species arrived sequentially, multiple species coexisted under variable temperature, but not under constant temperature. Temperature variability prevented extinction of late-arriving species that would have been excluded owing to priority effects if temperature had been constant. By contrast, if species arrived simultaneously, species coexisted under both variable and constant temperatures. We propose possible mechanisms underlying these results using a mathematical model that incorporates contrasting effects of microbial species on nectar pH and amino acids. Overall, our findings suggest that understanding consequences of priority effects for species coexistence requires explicit consideration of environmental variability.


Assuntos
Ecossistema , Modelos Teóricos , Temperatura , Bactérias/crescimento & desenvolvimento , Extinção Biológica , Flores/microbiologia , Mimulus/microbiologia , Néctar de Plantas , Dinâmica Populacional , Especificidade da Espécie , Leveduras/crescimento & desenvolvimento
7.
Front Plant Sci ; 15: 1294895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645388

RESUMO

Livestock presence impacts plant biodiversity (species richness) in grassland ecosystems, yet extent and direction of grazing impacts on biodiversity vary greatly across inter-annual periods. In this study, an 8-year (2014-2021) grazing gradient experiment with sheep was conducted in a semi-arid grassland to investigate the impact of grazing under different precipitation variability on biodiversity. The results suggest no direct impact of grazing on species richness in semi-arid Stipa grassland. However, increased grazing indirectly enhanced species richness by elevating community dominance (increasing the sheltering effect of Stipa grass). Importantly, intensified grazing also regulates excessive community biomass resulting from increased inter-annual wetness (SPEI), amplifying the positive influence of annual humidity index on species richness. Lastly, we emphasize that, in water-constrained grassland ecosystems, intra-annual precipitation variability (PCI) was the most crucial factor driving species richness. Therefore, the water-heat synchrony during the growing season may alleviate physiological constraints on plants, significantly enhancing species richness as a result of multifactorial interactions. Our study provides strong evidence for how to regulate grazing intensity to increase biodiversity under future variable climate patterns. We suggest adapting grazing intensity according to local climate variability to achieve grassland biodiversity conservation.

8.
Ecology ; 104(12): e4182, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37786267

RESUMO

Competition should play a key role in shaping community assembly and thereby local and regional biodiversity patterns. However, identifying its relative importance and effects in natural communities is challenging because theory suggests that competition can lead to different and even opposing patterns depending on the underlying mechanisms. Here, we have taken a different approach: rather than attempting to indirectly infer competition from diversity patterns, we compared trait diversity patterns in odonate (dragonfly and damselfly) communities across different spatial and temporal scales along a natural competition-predation gradient. At the local scale (within a community), we found that trait diversity increased with the size of top predators (from invertebrates to fish). This relationship is consistent with differences in taxonomic diversity, suggesting that competition reduces local trait diversity through competitive exclusion. Spatial (across communities) and temporal (within communities over time) trait variation peaked in communities with intermediate predators indicating that both high levels of competition or predation select for trait convergence of communities. This indicates that competition acts as a deterministic force that reduces trait diversity at the local, regional, and temporal scales, which contrasts with patterns at the taxonomic level. Overall, results from this natural experiment reveal how competition and predation interact to shape biodiversity patterns in natural communities across spatial and temporal scales and provide new insights into the underlying mechanisms.


Assuntos
Odonatos , Comportamento Predatório , Animais , Invertebrados , Biodiversidade , Peixes , Ecossistema
9.
BJPsych Bull ; 47(3): 152-156, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35942583

RESUMO

The fiftieth anniversary of the Royal College of Psychiatrists, and the publication of a detailed multidisciplinary social history of British psychiatry and mental health in recent decades have offered an opportunity to take a helicopter view and reflect on the relation between psychiatry and changing British society. We argue that the time has come to move on from the rhetoric of deinstitutionalisation and community mental healthcare to lead public debate and advocacy for the needs of the mentally ill in the new era of 'meta-community psychiatry and mental healthcare'. We need to respond effectively to the increasing awareness of mental health problems across society, aiming for a pluralist, integrated and well-funded reform led by joint professional and patient interests which could be unstoppable if we all work together.

10.
Ecol Evol ; 12(11): e9534, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425908

RESUMO

A spatially explicit eco-evolutionary model assembles simulated meta-communities which are subjected to species and community perturbation experiments to determine factors affecting the stability of the global ecosystem. Spatial structure and resource variety increase the persistence of the ensembles against the removal of an individual species, yet they remain vulnerable to re-invasion by an existing member of the meta-community if it is introduced to all patches with minimal population. Optimal reserve placement strategies are identified for maximally preserving global biodiversity from the effects of sequences of patch disruption, and targeted reserve placement that shields the most or the rarest biodiversity is usually effective. However, if disturbed populations are permitted to re-settle in neighboring patches, then reserves should also be situated remotely to isolate their residents from invasion.

11.
Proc Math Phys Eng Sci ; 477(2247): 20200742, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35153548

RESUMO

The Jacobian matrix of a dynamical system describes its response to perturbations. Conversely, one can estimate the Jacobian matrix by carefully monitoring how the system responds to environmental noise. We present a closed-form analytical solution for the calculation of a system's Jacobian from a time series. Being able to access the Jacobian enables a broad range of mathematical analyses by which deeper insights into the system can be gained. Here we consider in particular the computation of the leading Jacobian eigenvalue as an early warning signal for critical transitions. To illustrate this approach, we apply it to ecological meta-foodweb models, which are strongly nonlinear dynamical multi-layer networks. Our analysis shows that accurate results can be obtained, although the data demand of the method is still high.

12.
R Soc Open Sci ; 8(4): 201296, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34007456

RESUMO

On the iconic Great Barrier Reef (GBR), the cumulative impacts of tropical cyclones, marine heatwaves and regular outbreaks of coral-eating crown-of-thorns starfish (CoTS) have severely depleted coral cover. Climate change will further exacerbate this situation over the coming decades unless effective interventions are implemented. Evaluating the efficacy of alternative interventions in a complex system experiencing major cumulative impacts can only be achieved through a systems modelling approach. We have evaluated combinations of interventions using a coral reef meta-community model. The model consisted of a dynamic network of 3753 reefs supporting communities of corals and CoTS connected through ocean larval dispersal, and exposed to changing regimes of tropical cyclones, flood plumes, marine heatwaves and ocean acidification. Interventions included reducing flood plume impacts, expanding control of CoTS populations, stabilizing coral rubble, managing solar radiation and introducing heat-tolerant coral strains. Without intervention, all climate scenarios resulted in precipitous declines in GBR coral cover over the next 50 years. The most effective strategies in delaying decline were combinations that protected coral from both predation (CoTS control) and thermal stress (solar radiation management) deployed at large scale. Successful implementation could expand opportunities for climate action, natural adaptation and socioeconomic adjustment by at least one to two decades.

13.
Philos Trans R Soc Lond B Biol Sci ; 375(1814): 20190455, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33131442

RESUMO

Dispersal and foodweb dynamics have long been studied in separate models. However, over the past decades, it has become abundantly clear that there are intricate interactions between local dynamics and spatial patterns. Trophic meta-communities, i.e. meta-foodwebs, are very complex systems that exhibit complex and often counterintuitive dynamics. Over the past decade, a broad range of modelling approaches have been used to study these systems. In this paper, we review these approaches and the insights that they have revealed. We focus particularly on recent papers that study trophic interactions in spatially extensive settings and highlight the common themes that emerged in different models. There is overwhelming evidence that dispersal (and particularly intermediate levels of dispersal) benefits the maintenance of biodiversity in several different ways. Moreover, some insights have been gained into the effect of different habitat topologies, but these results also show that the exact relationships are much more complex than previously thought, highlighting the need for further research in this area. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.


Assuntos
Biodiversidade , Cadeia Alimentar , Modelos Biológicos , Animais , Conservação dos Recursos Naturais
14.
Ecology ; 100(4): e02633, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30693474

RESUMO

Moving beyond species count data is an essential step to better understand the effects of environmental perturbations on biodiversity and ecosystem functions, and to eventually better predict the strength and direction of those effects. Here, coupling an integrative path analysis approach with data from an extensive countrywide monitoring program, we tested the main spatial, environmental and anthropogenic drivers of change in the functional structure of aquatic macroinvertebrate communities along the entire Swiss Rhine river catchment. Functional structure was largely driven by inherent altitudinal variation influencing and cascading to regional scaled factors such as land use change and position in the riverine network, which, in turn, transformed local habitat structure variables. Those cascading effects across scales propagated through the biotic community, first affecting prey and, in turn, predators. Our results illustrate how seemingly less important local factors can act as essential transmission belts, propagating through direct and indirect pathways across scales to generate the specific context in which each functional group will strive or not, leading to characteristic landscape wide variations in functional community structure.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Monitoramento Ambiental , Invertebrados
15.
Artigo em Inglês | MEDLINE | ID: mdl-29677100

RESUMO

Since the 1960s, we have witnessed the development and growth of community mental health care that continues to dominate mental health policy and practice. Several high-income countries have implemented community mental health care programmes but for many others, including mostly low- and middle-income countries, it remains an aspiration. Although community mental health care has been positive for many service users, it has also had severe shortcomings. Expectations that it would lead to fuller social integration have not been fulfilled and many service users remain secluded in sheltered or custodial environments with limited social contacts and no prospect of work. Others receive little or no service at all. In today’s complex landscape of increasingly specialised services for people with mental health problems, the number of possible interfaces between services is increasing. Together with existing uneven financing systems and a context of constant change, these interfaces are challenging us to develop effective care pathways adjusted to the needs of service users and their carers. This discussion paper reviews the developments in community mental health care over the recent years and puts forward the concept of “Meta-Community Mental Health Care”. “Meta-Community Mental Health Care” embraces pluralism in understanding and treating psychiatric disorders, acknowledges the complexities of community provision, and reflects the realities and needs of the current era of care.


Assuntos
Serviços Comunitários de Saúde Mental/legislação & jurisprudência , Serviços Comunitários de Saúde Mental/organização & administração , Transtornos Mentais/terapia , Política de Saúde , Humanos , Política
16.
Front Microbiol ; 9: 3344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692982

RESUMO

The phylum Cyanobacteria comprises a non-photosynthetic lineage. The diversity and distribution of non-photosynthetic cyanobacteria (NCY) across aquatic environments are currently unknown, including their ecology. Here, we report about composition and phylogenetic diversity of two clades of NCY in ten lakes of the European peri-Alpine region, over the past ∼100 years. Using 16S rDNA sequences obtained from dated sediment cores, we found almost equal proportion of taxa assigned to Melainabacteria and the deepest-branching group Sericytochromatia (ML635J-21) (63 total detected taxa). The topology of our reconstructed phylogenies reflected evolutionary relationships expected from previous work, that is, a clear separation between the deepest branching Sericytochromatia, the Melainabacteria, and the photosynthetic cyanobacteria clades. While different lakes harbored distinct NCY communities, the diversity of NCY assemblages within and between lakes (alpha and beta diversity) did not significantly change over the last century. This is in contrast with what was previously reported for photosynthetic cyanobacteria. Unchanged community phylogenetic similarity over geographic distance indicated no dispersal limitation of NCY at the regional scale. Our results solicit studies linking in-lake environmental factors to the composition of these microorganisms' communities, whose assembly appeared not to have been influenced by large-scale anthropogenic environmental changes. This is the first attempt to study the diversity and distribution of NCY taxa across temperate lakes. It provides a first step towards understanding their distribution and ecological function in pelagic aquatic habitats, where these organisms seem to be prevalent.

17.
Front Microbiol ; 7: 1933, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999569

RESUMO

Microorganisms found in terrestrial subsurface environments make up a large proportion of the Earth's biomass. Biogeochemical cycles catalyzed by subsurface microbes have the potential to influence the speciation and transport of radionuclides managed in geological repositories. To gain insight on factors that constrain microbial processes within a formation with restricted groundwater flow we performed a meta-community analysis on groundwater collected from multiple discrete fractures underlying the Chalk River Laboratories site (located in Ontario, Canada). Bacterial taxa were numerically dominant in the groundwater. Although these were mainly uncultured, the closest cultivated representatives were from the phenotypically diverse Betaproteobacteria, Deltaproteobacteria, Bacteroidetes, Actinobacteria, Nitrospirae, and Firmicutes. Hundreds of taxa were identified but only a few were found in abundance (>1%) across all assemblages. The remainder of the taxa were low abundance. Within an ecological framework of selection, dispersal and drift, the local and regional diversity revealed fewer taxa within each assemblage relative to the meta-community, but the taxa that were present were more related than predicted by chance. The combination of dispersion at one phylogenetic depth and clustering at another phylogenetic depth suggest both niche (dispersion) and filtering (clustering) as drivers of local assembly. Distance decay of similarity reveals apparent biogeography of 1.5 km. Beta diversity revealed greater influence of selection at shallow sampling locations while the influences of dispersal limitation and randomness were greater at deeper sampling locations. Although selection has shaped each assemblage, the spatial scale of groundwater sampling favored detection of neutral processes over selective processes. Dispersal limitation between assemblages combined with local selection means the meta-community is subject to drift, and therefore, likely reflects the differential historical events that have influenced the current bacterial composition. Categorizing the study site into smaller regions of interest of more closely spaced fractures, or of potentially hydraulically connected fractures, might improve the resolution of an analysis to reveal environmental influences that have shaped these bacterial communities.

18.
PeerJ ; 3: e832, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780779

RESUMO

The positive relationship between habitat heterogeneity and species richness is a cornerstone of ecology. Recently, it was suggested that this relationship should be unimodal rather than linear due to a tradeoff between environmental heterogeneity and population sizes. Increased environmental heterogeneity will decrease effective habitat sizes, which in turn will increase the rate of local species extinctions. The occurrence of the unimodal richness-heterogeneity relationship at the habitat scale was confirmed in both empirical and theoretical studies. However, it is unclear whether it can occur at broader spatial scales, for meta-communities in diverse and patchy landscapes. Here, I used a spatially explicit meta-community model to quantify the roles of two species-level characteristics, niche width and immigration rates, on the type of the richness-heterogeneity relationship at the landscape scale. I found that both positive and unimodal richness-heterogeneity relationships can occur in meta-communities in patchy landscapes. The type of the relationship was affected by the interactions between inter-patch immigration rates and species' niche widths. Unimodal relationships were prominent in meta-communities comprising species with wide niches but low inter-patch immigration rates. In contrast, meta-communities consisting of species with narrow niches and high immigration rates exhibited positive relationships. Meta-communities comprising generalist species are therefore likely to exhibit unimodal richness-heterogeneity relationships as long as low immigration rates prevent rescue effects and patches are small. The richness-heterogeneity relationship at the landscape scale is dictated by species' niche widths and inter-patch immigration rates. These immigration rates, in turn, depend on the interaction between species dispersal capabilities and habitat connectivity, highlighting the roles of both species traits and landscape structure in generating the richness-heterogeneity relationship at the landscape scale.

19.
Trends Ecol Evol ; 30(2): 104-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542312

RESUMO

Humans are transforming the biosphere in unprecedented ways, raising the important question of how these impacts are changing biodiversity. Here we argue that our understanding of biodiversity trends in the Anthropocene, and our ability to protect the natural world, is impeded by a failure to consider different types of biodiversity measured at different spatial scales. We propose that ecologists should recognize and assess 15 distinct categories of biodiversity trend. We summarize what is known about each of these 15 categories, identify major gaps in our current knowledge, and recommend the next steps required for better understanding of trends in biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Atividades Humanas , Mudança Climática , Extinção Biológica , Geografia , Espécies Introduzidas , Dinâmica Populacional , Fatores de Tempo
20.
Oecologia ; 113(1): 1-20, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28307284

RESUMO

We present a broad comparative assessment of nested subsets in species composition among ecological communities. We assembled presence-absence data from a broad range of taxa, geographic regions, and spatial scales; and subjected this collection of datasets to common analyses, including a variety of metrics for measuring nestedness and null hypotheses against which to evaluate them. Here we identify ecological patterns in the prevalence and strength of nested subset structure, and assess differences and biases among the available methodologies. In all, we compiled 279 presence-absence matrices, of which 163 do not overlap in their coverage of species and sites. The survey includes studies on vertebrates, arthropods, mollusks, plants, and other taxa; from north temperate, tropical, and south temperate latitudes. Our results were as follows. Statistically significant nestedness was common. Assemblages from landbridge archipelagos were strongly nested, and immigration experiments were least nested. This adds further empirical support to the hypothesis that extinction plays a major role in producing nested structure. Nestedness was positively correlated with the ratio of the areas of the largest and smallest sites, suggesting that the range in area of sites affects nestedness. Taxonomic differences in nestedness were weak. Higher taxonomic levels showed stronger nesting than their constituent lower taxa. We observed no effect of distance of isolation on nestedness; nor any effects of latitude. With regard to methodology, the metrics Nc and Ut yielded similar results, although Nc proved slightly more flexible in use, and deals differently with tied sites. Similarities also exist in the behavior of N0 ("N") and Up, and between N1 and Ua. Standardized nestedness metrics were mostly insensitive to matrix size, and were useful in comparative analyses among presence-absence matrices. Most metrics were affected by the proportion of presences in the matrix. All analyses of nestedness, therefore, should test for bias due to matrix fill. We suggest that the factors controlling nested subset structure can be thought of as four filters that species pass to occur at a site: a sampling filter, a distance filter, a habitat filter, and an area filter - and three constraints on community homogeneity: evolutionary history, recent history, and spatial variation in the environment. The scale of examination can also have important effects on the degree of nestedness observed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa