Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Pak Med Assoc ; 70(8): 1418-1424, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32794498

RESUMO

Metabesity refers to metabolic aberrations associated with obesity. These include low- grade inflammation, mitochondrial dysfunction, and changes in gut microbiome. Along with a genetic component, the phenotypes in metabesity are largely the result of sedentary lifestyle and unhealthy eating habits. Metabesity is associated with several co-morbidities including an increased risk for cardiovascular conditions like hypertension, heart failure, myocardial infarction, stroke, and sudden death. Insulin resistance, high blood pressure and glucose levels, visceral adiposity, progressive atherosclerosis, dyslipidaemia and fatty liver are common in obese individuals. Obesity increases the risk for and overall mortality due to cancer. Metabesity adversely impacts endocrine balances in the body and increases the risk of degenerative conditions like dementia. Metabesity is an impending epidemic of huge public health implications with enormous clinical, socioeconomic, and humanistic burden. Interventions to combat sedentary lifestyle and unhealthy eating should be introduced early in life to prevent the onset and progression of metabesity. This review also summarizes the experts' recommendation from Pakistan to manage the rising metabesity concern in their geography based on the literature evidences.


Assuntos
Doenças Cardiovasculares , Fígado Gorduroso , Resistência à Insulina , Humanos , Obesidade/epidemiologia , Obesidade/prevenção & controle , Paquistão , Fatores de Risco
2.
Diseases ; 11(4)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37987275

RESUMO

Rheumatoid arthritis (RA) is associated with high cardiovascular mortality. It is not clear whether the metabolic consequences of chronic inflammation are involved. Biological disease-modifying anti-rheumatic drugs (bDMARDs) are highly efficient in the treatment of inflammation in RA. In this study, we aimed to describe the metabolic effects of anti-TNF-α treatment in RA patients. The clinical status of 16 patients was assessed using disease activity score-28 (DAS28) and C-reactive protein (CRP). Plasma samples were collected before treatment with anti-TNF-α treatment as well as after three and six months of treatment. Markers of lipid and glucose metabolism, as well as renal biomarkers, were assessed using standard biochemistry. ELISA was used for the quantification of insulin, leptin, and adiponectin. Although fasting insulin decreased by 14% at the end of the study, most of the analyzed parameters did not show any statistically or clinically significant dynamics. The exception was total bilirubin and cholesterol, which increased by 53% and 14%, respectively, after six months of treatment with anti-TNF-α treatment. Anti-TNF-α treatment did not induce major metabolic changes despite the strong anti-inflammatory and clinical symptoms of RA. Further studies will show whether longer observations are required for the detection of the metabolic effects of the anti-inflammatory treatment. Additional research is needed to understand the observed effect of bilirubin as an important endogenous antioxidant.

3.
Theranostics ; 11(14): 6983-7004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093866

RESUMO

Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.


Assuntos
Astrócitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gliose/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteínas Correpressoras/antagonistas & inibidores , Dieta Hiperlipídica , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/metabolismo , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/genética , Histona Desmetilases/antagonistas & inibidores , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , RNA Interferente Pequeno , RNA-Seq
4.
Genes (Basel) ; 10(5)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072002

RESUMO

The high prevalence of type 2 diabetes mellitus (T2DM), together with the fact that current treatments are only palliative and do not avoid major secondary complications, reveals the need for novel approaches to treat the cause of this disease. Efforts are currently underway to identify therapeutic targets implicated in either the regeneration or re-differentiation of a functional pancreatic islet ß-cell mass to restore insulin levels and normoglycemia. However, T2DM is not only caused by failures in ß-cells but also by dysfunctions in the central nervous system (CNS), especially in the hypothalamus and brainstem. Herein, we review the physiological contribution of hypothalamic neuronal and glial populations, particularly astrocytes, in the control of the systemic response that regulates blood glucose levels. The glucosensing capacity of hypothalamic astrocytes, together with their regulation by metabolic hormones, highlights the relevance of these cells in the control of glucose homeostasis. Moreover, the critical role of astrocytes in the response to inflammation, a process associated with obesity and T2DM, further emphasizes the importance of these cells as novel targets to stimulate the CNS in response to metabesity (over-nutrition-derived metabolic dysfunctions). We suggest that novel T2DM therapies should aim at stimulating the CNS astrocytic response, as well as recovering the functional pancreatic ß-cell mass. Whether or not a common factor expressed in both cell types can be feasibly targeted is also discussed.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Doenças Metabólicas/metabolismo , Animais , Astrócitos/metabolismo , Metabolismo Energético , Homeostase , Humanos
5.
Cells ; 8(3)2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909602

RESUMO

In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950's to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and "morning sickness" anti-nausea medication targeting pregnant women in the 1950's. The "thalidomide babies" became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of "social responsibility" allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle's physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer's Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for "metabesity", an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP's induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80's years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).


Assuntos
2,4-Dinitrofenol/metabolismo , Medicina , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cognição , Humanos , Espécies Reativas de Oxigênio/metabolismo
6.
Turk J Urol ; 43(4): 410-413, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29201500

RESUMO

Metabolic syndrome is one of today's most important health problems. Due to increased prevalence of metabolic syndrome in society, studies done on this topic have increased in number. Although metabolic syndrome was previously considered to be important only for cardiovascular health, it has been learned that with new data, human health is compromised more thoroughly by metabolic syndrome and is also a danger to malignancy. As a result, a new definition in the form of metabesity has been introduced. In this review, available information on metabesity and urological cancers is presented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa