Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104919, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315792

RESUMO

Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and ß-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for ß-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.


Assuntos
Coenzimas , Escherichia coli , beta-Alanina , beta-Alanina/metabolismo , Coenzima A/biossíntese , Coenzimas/biossíntese , Piridoxal , Fosfato de Piridoxal/metabolismo , Vitaminas/metabolismo , Escherichia coli/metabolismo , NAD/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo
2.
J Nutr ; 153(3): 645-656, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36931747

RESUMO

BACKGROUND: Plant proteins (PPs) have been associated with better cardiovascular health than animal proteins (APs) in epidemiological studies. However, the underlying metabolic mechanisms remain mostly unknown. OBJECTIVES: Using a combination of cutting-edge isotopic methods, we aimed to better characterize the differences in protein and energy metabolisms induced by dietary protein sources (PP compared with AP) in a prudent or western dietary context. METHODS: Male Wistar rats (n = 44, 8 wk old) were fed for 4.5 mo with isoproteic diets differing in their protein isolate sources, either AP (100% milk) or PP (50%:50% pea: wheat) and being normal (NFS) or high (HFS) in sucrose (6% or 15% kcal) and saturated fat (7% or 20% kcal), respectively. We measured body weight and composition, hepatic enzyme activities and lipid content, and plasma metabolites. In the intestine, liver, adipose tissues, and skeletal muscles, we concomitantly assessed the extent of amino acid (AA) trafficking using a 15N natural abundance method, the rates of macronutrient routing to dispensable AA using a 13C natural abundance method, and the metabolic fluxes of protein synthesis (PS) and de novo lipogenesis using a 2H labeling method. Data were analyzed using ANOVA and Mixed models. RESULTS: At the whole-body level, PP limited HFS-induced insulin resistance (-27% in HOMA-IR between HFS groups, P < 0.05). In the liver, PP induced lower lipid content (-17%, P < 0.01) and de novo lipogenesis (-24%, P < 0.05). In the different tissues studied, PP induced higher AA transamination accompanied by higher routings of dietary carbohydrates and lipids toward dispensable AA synthesis by glycolysis and ß-oxidation, resulting in similar tissue PS and protein mass. CONCLUSIONS: In growing rats, compared with AP, a balanced blend of PP similarly supports protein anabolism while better limiting whole-body and tissue metabolic dysregulations through mechanisms related to their less optimal AA profile for direct channeling to PS.


Assuntos
Proteínas de Ervilha , Ratos , Animais , Proteínas de Ervilha/metabolismo , Proteínas do Leite/farmacologia , Proteínas do Leite/metabolismo , Triticum , Sacarose , Dieta Hiperlipídica , Ratos Wistar , Fígado/metabolismo , Aminoácidos/metabolismo , Proteínas Alimentares/metabolismo , Lipídeos
3.
Trends Analyt Chem ; 1682023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840599

RESUMO

Metabolic assays serve as pivotal tools in biomedical research, offering keen insights into cellular physiological and pathological states. While mass spectrometry (MS)-based metabolomics remains the gold standard for comprehensive, multiplexed analyses of cellular metabolites, innovative technologies are now emerging for the targeted, quantitative scrutiny of metabolites and metabolic pathways at the single-cell level. In this review, we elucidate an array of these advanced methodologies, spanning synthetic and surface chemistry techniques, imaging-based methods, and electrochemical approaches. We summarize the rationale, design principles, and practical applications for each method, and underscore the synergistic benefits of integrating single-cell metabolomics (scMet) with other single-cell omics technologies. Concluding, we identify prevailing challenges in the targeted scMet arena and offer a forward-looking commentary on future avenues and opportunities in this rapidly evolving field.

4.
Metabolomics ; 18(12): 105, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36480060

RESUMO

INTRODUCTION: Fuel sources for skeletal muscle tissue include carbohydrates and fatty acids, and utilization depends upon fiber type, workload, and substrate availability. The use of isotopically labeled substrate tracers combined with nuclear magnetic resonance (NMR) enables a deeper examination of not only utilization of substrates by a given tissue, but also their contribution to tricarboxylic acid (TCA) cycle intermediates. OBJECTIVES: The goal of this study was to determine the differential utilization of substrates in isolated murine skeletal muscle, and to evaluate how isopotomer anlaysis provided insight into skeletal muscle metabolism. METHODS: Isolated C57BL/6 mouse hind limb muscles were incubated in oxygenated solution containing uniformly labeled 13C6 glucose, 13C3 pyruvate, or 13C2 acetate at room temperature. Isotopomer analysis of 13C labeled glutamate was performed on pooled extracts of isolated soleus and extensor digitorum longus (EDL) muscles. RESULTS: Pyruvate and acetate were more avidly consumed than glucose with resultant increases in glutamate labeling in both muscle groups. Glucose incubation resulted in glutamate labeling, but with high anaplerotic flux in contrast to the labeling by pyruvate. Muscle fiber type distinctions were evident by differences in lactate enrichment and extent of substrate oxidation. CONCLUSION: Isotope tracing experiments in isolated muscles reveal that pyruvate and acetate are avidly oxidized by isolated soleus and EDL muscles, whereas glucose labeling of glutamate is accompanied by high anaplerotic flux. We believe our results may set the stage for future examination of metabolic signatures of skeletal muscles from pre-clinical models of aging, type-2 diabetes and neuromuscular disease.


Assuntos
Glucose , Ácido Pirúvico , Camundongos , Animais , Camundongos Endogâmicos C57BL , Ácido Glutâmico , Metabolômica , Músculo Esquelético , Acetatos
5.
J Biol Chem ; 294(36): 13464-13477, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337706

RESUMO

Nucleotide synthesis is essential to proliferating cells, but the preferred precursors for de novo biosynthesis are not defined in human cancer tissues. We have employed multiplexed stable isotope-resolved metabolomics to track the metabolism of [13C6]glucose, D2-glycine, [13C2]glycine, and D3-serine into purine nucleotides in freshly resected cancerous and matched noncancerous lung tissues from nonsmall cell lung cancer (NSCLC) patients, and we compared the metabolism with established NSCLC PC9 and A549 cell lines in vitro Surprisingly, [13C6]glucose was the best carbon source for purine synthesis in human NSCLC tissues, in contrast to the noncancerous lung tissues from the same patient, which showed lower mitotic indices and MYC expression. We also observed that D3-Ser was preferentially incorporated into purine rings over D2-glycine in both tissues and cell lines. MYC suppression attenuated [13C6]glucose, D3-serine, and [13C2]glycine incorporation into purines and reduced proliferation in PC9 but not in A549 cells. Using detailed kinetic modeling, we showed that the preferred use of glucose as a carbon source for purine ring synthesis in NSCLC tissues involves cytoplasmic activation/compartmentation of the glucose-to-serine pathway and enhanced reversed one-carbon fluxes that attenuate exogenous serine incorporation into purines. Our findings also indicate that the substrate for de novo nucleotide synthesis differs profoundly between cancer cell lines and fresh human lung cancer tissues; the latter preferred glucose to exogenous serine or glycine but not the former. This distinction in substrate utilization in purine synthesis in human cancer tissues should be considered when targeting one-carbon metabolism for cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glicina/biossíntese , Neoplasias Pulmonares/metabolismo , Nucleotídeos de Purina/biossíntese , Serina/biossíntese , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Metabolômica
6.
J Biol Chem ; 292(31): 12895-12905, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28615447

RESUMO

Metabolite transport is a major function of the retinal pigment epithelium (RPE) to support the neural retina. RPE dysfunction plays a significant role in retinal degenerative diseases. We have used mass spectrometry with 13C tracers to systematically study nutrient consumption and metabolite transport in cultured human fetal RPE. LC/MS-MS detected 120 metabolites in the medium from either the apical or basal side. Surprisingly, more proline is consumed than any other nutrient, including glucose, taurine, lipids, vitamins, or other amino acids. Besides being oxidized through the Krebs cycle, proline is used to make citrate via reductive carboxylation. Citrate, made either from 13C proline or from 13C glucose, is preferentially exported to the apical side and is taken up by the retina. In conclusion, RPE cells consume multiple nutrients, including glucose and taurine, but prefer proline, and they actively synthesize and export metabolic intermediates to the apical side to nourish the outer retina.


Assuntos
Prolina/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Transporte Biológico , Isótopos de Carbono , Polaridade Celular , Células Cultivadas , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Técnicas de Cocultura , Embrião de Mamíferos/citologia , Glucose/metabolismo , Humanos , Cinética , Metabolômica/métodos , Camundongos , Retina/citologia , Retina/enzimologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/enzimologia , Taurina/metabolismo , Técnicas de Cultura de Tecidos
7.
J Biol Chem ; 292(27): 11147-11153, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28559281

RESUMO

NAD+ biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD+ biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD+ biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD+ biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD+ biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD+ from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD+ levels and partially reversed NAD+-dependent phenotypes caused by mutation of pnc-1, which encodes a nicotinamidase required for NAD+ salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD+ homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD+ biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD+ biosynthesis creates novel possibilities for manipulating NAD+ biosynthetic pathways, which is key for the future of therapeutics.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Complexos Multienzimáticos , NAD , Orotato Fosforribosiltransferase , Orotidina-5'-Fosfato Descarboxilase , Ácido Quinolínico/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , NAD/biossíntese , NAD/genética , Orotato Fosforribosiltransferase/genética , Orotato Fosforribosiltransferase/metabolismo , Orotidina-5'-Fosfato Descarboxilase/genética , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Triptofano/genética , Triptofano/metabolismo
8.
J Biol Chem ; 292(48): 19840-19848, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29018092

RESUMO

3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an essential component of LPS in the outer leaflet of the Gram-negative bacterial outer membrane. Although labeling of Escherichia coli with the chemical reporter 8-azido-3,8-dideoxy-d-manno-oct-2-ulosonic acid (Kdo-N3) has been reported, its incorporation into LPS has not been directly shown. We have now verified Kdo-N3 incorporation into E. coli LPS at the molecular level. Using microscopy and PAGE analysis, we show that Kdo-N3 is localized to the outer membrane and specifically incorporates into rough and deep-rough LPS. In an E. coli strain lacking endogenous Kdo biosynthesis, supplementation with exogenous Kdo restored full-length core-LPS, which suggests that the Kdo biosynthetic pathways might not be essential in vivo in the presence of sufficient exogenous Kdo. In contrast, exogenous Kdo-N3 only restored a small fraction of core LPS with the majority incorporated into truncated LPS. The truncated LPS were identified as Kdo-N3-lipid IVA and (Kdo-N3)2-lipid IVA by MS analysis. The low level of Kdo-N3 incorporation could be partly explained by a 6-fold reduction in the specificity constant of the CMP-Kdo synthetase KdsB with Kdo-N3 compared with Kdo. These results indicate that the azido moiety in Kdo-N3 interferes with its utilization and may limit its utility as a tracer of LPS biosynthesis and transport in E. coli We propose that our findings will be helpful for researchers using Kdo and its chemical derivatives for investigating LPS biosynthesis, transport, and assembly in Gram-negative bacteria.


Assuntos
Azidas/metabolismo , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Açúcares Ácidos/metabolismo , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes/metabolismo , Espectrometria de Massas , Nucleotidiltransferases/metabolismo , Especificidade por Substrato
9.
J Biol Chem ; 289(34): 23318-28, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24986863

RESUMO

Mutations in the cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted (13)C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers.


Assuntos
Hipóxia Celular , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Neoplasias/enzimologia , Linhagem Celular Tumoral , Glicólise , Células HCT116 , Humanos , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/fisiologia , Neoplasias/patologia
10.
Prostaglandins Leukot Essent Fatty Acids ; 202: 102622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954932

RESUMO

Epoxyeicosatrienoic acids (EpETrEs) are bioactive lipid mediators of arachidonic acid cytochrome P450 oxidation. In vivo, the free (unbound) form of EpETrEs regulate multiple processes including blood flow, angiogenesis and inflammation resolution. Free EpETrEs are thought to rapidly degrade via soluble epoxide hydrolase (sEH); yet, in many tissues, the majority of EpETrEs are esterified to complex lipids (e.g. phospholipids) suggesting that esterification may play a major role in regulating free, bioactive EpETrE levels. This hypothesis was tested by quantifying the metabolism of intraperitoneally injected free d11-11(12)-Epoxyeicosatrienoic acid (d11-11(12)-EpETrE) in male and female rats. Plasma and tissues (liver, adipose and brain) were obtained 3 to 4 min later and assayed for d11-11(12)-EpETrE and its sEH metabolite, d11-11,12-dihydroxyeicosatrienoic acid (d11-11,12-diHETrE) in both the free and esterified lipid fractions. In both males and females, the majority of injected tracer was recovered in liver followed by plasma and adipose. No tracer was detected in the brain, indicating that brain levels are maintained by endogenous synthesis from precursor fatty acids. In plasma, liver, and adipose, the majority (>54 %) of d11-11(12)-EpETrE was found esterified to phospholipids or neutral lipids (triglycerides and cholesteryl esters). sEH-derived d11-11,12-diHETrE was not detected in plasma or tissues, suggesting negligible conversion within the 3-4 min period post tracer injection. This study shows that esterification is the main pathway regulating free 11(12)-EpETrE levels in vivo.

11.
Methods Mol Biol ; 1862: 109-119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30315463

RESUMO

Heavy isotope labeled metabolites are readily detected by mass spectrometry and are commonly used to analyze the rates of metabolic reactions in cultured cells. The ability to detect labeled metabolites-and infer fluxes-is influenced by a number of factors that can confound simplistic comparative assays. The accumulation of labeled metabolites is strongly influenced by the pool size of the metabolite of interest and also by changes in downstream reactions, which are not always fully perceived. Here, we describe a method that overcomes some of these limitations and allows simple calculation of reaction rates under low nutrient, rapid reaction rate conditions. Acutely increasing the pool of the metabolite of interest (by adding a pulse of excess unlabeled nutrient to the cells) rapidly increases accumulation of labeled metabolite, facilitating a more accurate assessment of reaction rate.


Assuntos
Técnicas de Cultura de Células/métodos , Marcação por Isótopo/métodos , Análise do Fluxo Metabólico/métodos , Metabolômica/métodos , Isótopos de Carbono/química , Técnicas de Cultura de Células/instrumentação , Meios de Cultura/química , Células HCT116 , Humanos , Marcação por Isótopo/instrumentação , Análise do Fluxo Metabólico/instrumentação , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/instrumentação , Isótopos de Nitrogênio/química , Nutrientes/metabolismo , Serina/farmacologia
12.
Cell Rep ; 21(12): 3536-3547, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262332

RESUMO

Insulin triggers an extensive signaling cascade to coordinate adipocyte glucose metabolism. It is considered that the major role of insulin is to provide anabolic substrates by activating GLUT4-dependent glucose uptake. However, insulin stimulates phosphorylation of many metabolic proteins. To examine the implications of this on glucose metabolism, we performed dynamic tracer metabolomics in cultured adipocytes treated with insulin. Temporal analysis of metabolite concentrations and tracer labeling revealed rapid and distinct changes in glucose metabolism, favoring specific glycolytic branch points and pyruvate anaplerosis. Integrating dynamic metabolomics and phosphoproteomics data revealed that insulin-dependent phosphorylation of anabolic enzymes occurred prior to substrate accumulation. Indeed, glycogen synthesis was activated independently of glucose supply. We refer to this phenomenon as metabolic priming, whereby insulin signaling creates a demand-driven system to "pull" glucose into specific anabolic pathways. This complements the supply-driven regulation of anabolism by substrate accumulation and highlights an additional role for insulin action in adipocyte glucose metabolism.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Metaboloma , Células 3T3 , Animais , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa