Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Small ; 20(4): e2305877, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718437

RESUMO

The precise design of low-cost, efficient, and definite electrocatalysts is the key to sustainable renewable energy. The urea oxidation reaction (UOR) offers a promising alternative to the oxygen evolution reaction for energy-saving hydrogen generation. In this study, by tuning the lattice expansion, a series of M-FeNi layered double hydroxides (M-FeNi LDHs, M: Mo, Mn, V) with excellent UOR performance are synthesized. The hydrolytic transformation of Fe-MIL-88A is assisted by urea, Ni2+ and high-valence metals, to form a hollow M-FeNi LDH. Owing to the large atomic radius of the high-valence metal, lattice expansion is induced, and the electronic structure of the FeNi-LDH is regulated. Doping with high-valence metal is more favorable for the formation of the high-valence active species, NiOOH, for the UOR. Moreover, the hollow spindle structure promoted mass transport. Thus, the optimal Mo-FeNi LDH showed outstanding UOR electrocatalytic activity, with 1.32 V at 10 mA cm-2 . Remarkably, the Pt/C||Mo-FeNi LDH catalyst required a cell voltage of 1.38 V at 10 mA·cm-2 in urea-assisted water electrolysis. This study suggests a new direction for constructing nanostructures and modulating electronic structures, which is expected to ultimately lead to the development of a class of auxiliary electrocatalysts.

2.
Small ; 20(12): e2307467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940620

RESUMO

The electrochemical reduction of carbon dioxide (CO2) to ethylene creates a carbon-neutral approach to converting carbon dioxide into intermittent renewable electricity. Exploring efficient electrocatalysts with potentially high ethylene selectivity is extremely desirable, but still challenging. In this report, a laboratory-designed catalyst HKUST-1@Cu2O/PTFE-1 is prepared, in which the high specific surface area of the composites with improved CO2 adsorption and the abundance of active sites contribute to the increased electrocatalytic activity. Furthermore, the hydrophobic interface constructed by the hydrophobic material polytetrafluoroethylene (PTFE) effectively inhibits the occurrence of hydrogen evolution reactions, providing a significant improvement in the efficiency of CO2 electroreduction. The distinctive structures result in the remarkable hydrocarbon fuels generation with high Faraday efficiency (FE) of 67.41%, particularly for ethylene with FE of 46.08% (-1.0 V vs RHE). The superior performance of the catalyst is verified by DFT calculation with lower Gibbs free energy of the intermediate interactions with improved proton migration and selectivity to emerge the polycarbon(C2+) product. In this work, a promising and effective strategy is presented to configure MOF-based materials with tailored hydrophobic interface, high adsorption selectivity and more exposed active sites for enhancing the efficiency of the electroreduction of CO2 to C2+ products with high added value.

3.
Small ; 20(8): e2303473, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840383

RESUMO

Hierarchical porous materials have attracted the attention of researchers due to their enormous specific surface area, maximized active site utilization efficiency, and unique structure and properties. In this context, metal-organic frameworks (MOFs) offer a unique mix of properties that make them particularly appealing as tunable porous substrates containing highly active sites. This review focuses on recent advances in the types and synthetic strategies of hierarchical porous MOFs and their derived materials. Furthermore, it highlights the relationship between the mass diffusion and transport of hierarchical porous structures and the pore size with examples and simulations, while identifying their potential and limitations. On this basis, how the synthesis conditions affect the structure and electrochemical properties of MOFs based hierarchical porous materials with different structures is discussed, highlighting the prospects and challenges for the synthetization, as well as further scientific research and practical applications. Finally, some insights into current research and future design ideas for advanced MOFs based hierarchical porous materials are presented.

4.
Small ; 20(14): e2306406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990371

RESUMO

Interface engineering attracted tremendous attention owing to its remarkable ability to impede dendrite growth and side reactions in aqueous zinc-ion batteries. Artificial interface layers composed of crystalline materials have been extensively employed to stabilize the Zn anode. However, the diffusion kinetics of Zn2+ in highly crystalline materials are hindered by steric effects from the lattice, thereby limiting the high-rate performance of the cell. Here, defect-rich HfO2-x polycrystals derived from metal-organic frameworks (MOFs) (D-HfO2-x) are developed to enhance the Zn deposition behavior. The discrepancy of dielectric constants between metallic Zn and HfO2 enables the building of an electrostatic shielding layer for uniform Zn deposition. More importantly, the oxygen vacancies in D-HfO2-x provide abundant active sites for Zn2+ adsorption, accelerating the kinetics of Zn2+ migration, which contributes to the preferential exposure of the Zn (002) plane during plating. Consequently, the D-HfO2-x-modified Zn anode delivers ultrastable durability of over 5000 h at 1 mA cm-2 and a low voltage hysteresis of 30 mV. The constructed defective coating provides a guarantee for the stable operation of Zn anodes, and the innovative approach of defective engineering also offers new ideas for the protection of other energy storage devices.

5.
Small ; 20(23): e2310373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174633

RESUMO

Pristine iron triad metal-organic frameworks (MOFs), i.e., Fe-MOFs, Co-MOFs, Ni-MOFs, and heterometallic iron triad MOFs, are utilized as versatile and promising cathodes for alkali metal-ion batteries, owing to their distinctive structure characteristics, including modifiable and designable composition, multi-electron redox-active sites, exceptional porosity, and stable construction facilitating rapid ion diffusion. Notably, pristine iron triad MOFs cathodes have recently achieved significant milestones in electrochemical energy storage due to their exceptional electrochemical properties. Here, the recent advances in pristine iron triad MOFs cathodes for alkali metal-ion batteries are summarized. The redox reaction mechanisms and essential strategies to boost the electrochemical behaviors in associated electrochemical energy storage devices are also explored. Furthermore, insights into the future prospects related to pristine iron triad MOFs cathodes for lithium-ion, sodium-ion, and potassium-ion batteries are also delivered.

6.
Small ; 20(13): e2307236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37974471

RESUMO

Bimetallic metal-organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce-MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic-level characterization by X-ray Absorption Fine Structure (XAFS) and X-ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water-stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Ácido Acético , Biotecnologia , Água
7.
Small ; : e2308378, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453681

RESUMO

Traditional electromagnetic absorbing materials (EWAMs) are usually single functions and can easily affect their performance in diverse application scenarios. Effective integration of EWAMs into multiple function components is a valuable strategy to achieve maximum absorption and multifunction performance while maintaining their indispensable physical and chemical properties. In this work, the polyoxometalates (POMs) serving as "guests" are embedded within the Co-MOFs to construct 3d/4d-bimetallic based crystalline precursors of dielectric/magnetic synergistic system. The proper pyrolysis temperature induced the homogeneously distributed metallic Co and MoCx hetero-units into carbon matrix with modified porous defect engineering to enhance electromagnetic wave (EW). Owing to the brilliant synergistic effect of polarization, magnetic loss, and impedance matching, the superior RLmin of -47.72 dB at 11.76 GHz at the thickness of 2.0 mm and a wide adequate absorption bandwidth (EAB) of 4.58 GHz (7.44-12.02 GHz) covered the whole X-band at the thickness of 2.5 mm for η-MoC/Co@NC-800 are observed. More importantly, the resulting MoCx hybrid polyimide (MCP) aerogel exhibits desirable properties such as structural robustness, nonflammability, excellent thermal insulation, and self-cleaning capabilities that are comparable to those of commercially available products. This work offers inspiration and strategy for creating multipurpose microwave absorbers with intricate structural designs.

8.
Small ; 20(8): e2306159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840442

RESUMO

2D metal-organic frameworks (2D MOFs) with π conjugation have attracted widespread attention in the field of lithium storage due to their unique electron transfer units and structural characteristics. However, the periodic 2D planar extension structure hides some active sites, which is not conducive to the utilization of its structural advantages. In this work, a series of triptycene-based 2D conductive MOFs (M-DBH, M = Ni, Mn, and Co) with 3D extension structures are constructed by coordinating 9,10-dihydro-9,10-[1,2]benzenoanthracene-2,3,6,7,14,15-hexaol with metal ions to explore their potential applications in lithium-ion and lithium-sulfur batteries. This is the first study in which 2D conductive MOFs with the 3D extended molecule are used as electrode materials for lithium storage. The designed material generates rich active sites through staggered stacking layers and shows excellent performance in lithium-ion and lithium-sulfur batteries. The capacity retention rate of Ni-DBH can reach over 70% after 500 cycles at 0.2 C in lithium-ion batteries, while the capacity of S@Mn-DBH exceeds 305 mAh g-1 after 480 cycles at 0.5 C in lithium-sulfur batteries. Compared with the materials with 2D planar extended structures, the M-DBH electrodes with 3D extended structures in this work exhibit better performance in terms of cycle time and lithium storage capacity.

9.
Chemistry ; : e202401644, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869378

RESUMO

A series of monometallic Ni-, Co- and Zn-MOFs and bimetallic NiCo-, NiZn- and CoZn-MOFs M2(BDC)2DABCO and (M,M')2(BDC)2DABCO, respectively, with the same pillar and layer linkers 4-diazabicyclo[2.2.2]octane (DABCO) and benzene-1,4-dicarboxylate (BDC) were prepared through a fast microwave-assisted thermal conversion synthesis method within only 12 min. In the bimetallic MOFs the ratio M:M' was 4:1. The mono- and bimetallic MOFs were selected to systematically explore the catalytic-activity of their derived metal oxide/hydroxides for the oxygen evolution reaction (OER). The NiCoMOF exhibits superior catalytic activity for the OER with the lowest overpotentials of 301 mV and Tafel slopes of 42 mV dec-1 on a glassy carbon electrode in 1 mol L-1 KOH electrolyte at a current density of 10 mA cm-2. In addition, NiCoMOF was in situ grown in just 25 min by the MW synthesis on the surface of nickel foam (NF) where overpotentials of 313 and 328 mV at current densities of 50 and 300 mA cm-2, respectively, were delivered and superior long-term stability for practical OER application. The low Tafel slope of 27 mV dec-1, as well as a low reaction resistance from electrochemical impedance spectroscopy measurement (Rfar = 2 Ω), confirm the excellent OER performance of this NiCoMOF/NF composite.

10.
Chemistry ; 30(39): e202401407, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38699860

RESUMO

Semiochemicals can be used to manipulate insect behaviour for sustainable pest management strategies, but their high volatility is a major issue for their practical implementation. Inclusion of these molecules within porous materials is a potential solution to this issue, as it can allow for a slower and more controlled release. In this work, we demonstrate that a series of Zr(IV) and Al(III) metal-organic frameworks (MOFs) with channel-type pores enable controlled release of three semiochemicals over 100 days by pore size design, with the uptake and rate of release highly dependent on the pore size. Insight from grand canonical Monte Carlo simulations indicates that this is due to weaker MOF-guest interactions per guest molecule as the pore size increases. These MOFs are all stable post-release and can be reloaded to show near-identical re-release profiles. These results provide valuable insight on the diffusion behaviour of volatile guests in MOFs, and for the further development of porous materials for sustainable agriculture applications.

11.
Environ Res ; 258: 119404, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880323

RESUMO

Adsorption is a promising way to remove persistent organic pollutants (POPs), a major environmental issue. With their high porosity and vast surface areas, MOFs are suited for POP removal due to their excellent adsorption capabilities. This review addresses the intricate principles of MOF-mediated adsorption and helps to future attempts to mitigate organic water pollution. This review examines the complicated concepts of MOF-mediated adsorption, including MOF synthesis methodologies, adsorption mechanisms, and material tunability and adaptability. MOFs' ability to adsorb POPs via electrostatic forces, acid-base interactions, hydrogen bonds, and pi-pi interactions is elaborated. This review demonstrates its versatility in eliminating many types of contaminants. Functionalizing, adding metal nanoparticles, or changing MOFs after they are created can improve their performance and remove contaminants. This paper also discusses MOF-based pollutant removal issues and future prospects, including adsorption capacity, selectivity, scale-up for practical application, stability, and recovery. These obstacles can be overcome by rationally designing MOFs, developing composite materials, and improving material production and characterization. Overall, MOF technology research and innovation hold considerable promise for environmental pollution solutions and sustainable remediation. Desorption and regeneration in MOFs are also included in the review, along with methods for improving pollutant removal efficiency and sustainability. Case studies of effective MOF regeneration and scaling up for practical deployment are discussed, along with future ideas for addressing these hurdles.

12.
Environ Res ; 251(Pt 1): 118562, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447605

RESUMO

Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Metais Pesados/análise , Metais Pesados/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
13.
Ecotoxicol Environ Saf ; 269: 115854, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154210

RESUMO

Chlorination is a versatile technique to combat water-borne pathogens. Over the last years, there has been continued research interest to abate the formation of chlorinated disinfection by-products (DBPs). To prevent hazardous DBPs in drinking water, it is decided to diminish organic precursors, among which humic acids (HA) resulting from the decomposition and transformation of biomass. Metal-organic frameworks (MOFs) such as zeolitic imidazolate frameworks (ZIFs) have recently received tremendous attention in water purification. Herein, customized ZIF-67 MOFs possessing various physicochemical properties were prepared by changing the cobalt source. The HA removal by ZIF-67-Cl, ZIF-67-OAc, ZIF-67-NO3, and ZIF-67-SO4 were 85.6%, 68.9%, 86.1%, and 87.4%, respectively, evidently affected by the specific surface area. HA uptake by ZIF-67-SO4 indicated a removal efficiency beyond 90% in 4  90% after 60 min mixing the solution with 0.3 g L-1 ZIF-67-SO4. Notably, an acceptable removal performance (∼72.3%) was obtained even at HA concentrations up to 100 mg L-1. The equilibrium data fitted well with the isotherm models in the order of Langmuir> Hill > BET> Khan > Redlich-Peterson> Jovanovic> Freundlich > and Temkin. The maximum adsorption capacity qm for HA uptake by ZIF-67-SO4 was 175.89 mg g-1, well above the majority of adsorbents. The pseudo-first-order model described the rate of HA adsorption by time. In conclusion, ZIF-67-SO4 presented promising adsorptive properties against HA. Further studies would be needed to minimize cobalt leaching from the ZIF-67-SO4 structure and improve its reusability safely, to ensure its effectiveness and the economy of adsorption system.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Substâncias Húmicas , Cobalto , Adsorção , Poluentes Químicos da Água/análise
14.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611894

RESUMO

The sustainable management of wastewater through recycling and utilization stands as a pressing concern in the trajectory of societal advancement. Prioritizing the elimination of diverse organic contaminants is paramount in wastewater treatment, garnering significant attention from researchers worldwide. Emerging metal-organic framework materials (MOFs), bridging organic and inorganic attributes, have surfaced as novel adsorbents, showcasing pivotal potential in wastewater remediation. Nevertheless, challenges like limited water stability, elevated dissolution rates, and inadequate hydrophobicity persist in the context of wastewater treatment. To enhance the performance of MOFs, they can be modified through chemical or physical methods, and combined with membrane materials as additives to create membrane composite materials. These membrane composites, derived from MOFs, exhibit remarkable characteristics including enhanced porosity, adjustable pore dimensions, superior permeability, optimal conductivity, and robust water stability. Their ability to effectively sequester organic compounds has spurred significant research in this field. This paper introduces methods for enhancing the performance of MOFs and explores their potential applications in water treatment. It delves into the detailed design, synthesis strategies, and fabrication of composite membranes using MOFs. Furthermore, it focuses on the application prospects, challenges, and opportunities associated with MOF composite membranes in water treatment.

15.
Angew Chem Int Ed Engl ; 63(21): e202402176, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470010

RESUMO

Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal-organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr-NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr-NH to *Pyr-N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.

16.
Small ; 19(3): e2206116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408824

RESUMO

Hierarchically ordered porous materials with tailored and inter-connected macro-, meso-, and micro-pores would facilitate the heterogeneous adsorption and catalysis processes for a wide range of applications but remain a challenge for synthetic chemists. Here, a general and efficient strategy for the synthesis of inverse opal metal-organic frameworks (IO MOFs) with a tunable size of macro-, meso-, and micro-pores is reported. The strategy is based on the step-wise template formation, precursor infiltration, solvo-thermal reaction, and chemical etching. As a proof of the general applicability of this strategy, a series of inverse opal zirconium-based MOFs with intrinsic micro- and/or meso-pores, including UiO-66, MOF-808, NU-1200, NU-1000 and PCN-777, and tunable macropores (1 µm, 2 µm, 3 µm, 5 µm, and 10 µm), have been prepared with outstanding yields. These IO MOFs demonstrate significantly enhanced absorption rates and faster initial hydrolysis rates for organophosphorus (OPs) aggregates compared to those of the pristine MOFs. This work paves the way for the further development of hierarchically ordered MOFs for advanced applications.


Assuntos
Estruturas Metalorgânicas , Adsorção , Catálise , Hidrólise , Porosidade
17.
Small ; 19(50): e2303884, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37625077

RESUMO

Metal-organic frameworks (MOFs) can be customized through modular assembly to achieve a wide range of potential applications, based on their desired functionality. However, most of the initially reported MOFs are limited to microporous systems and are not sufficiently stable, which restricts their popularization. Heterogeneity is introduced into a simple MOF framework to create MOF-based heterostructures with fascinating properties and interesting functions. Heterogeneity can be introduced into the MOFs via postsynthetic/ligand exchange. Although the ligand exchange has shown potential, it is difficult to precisely control the degree of exchange or position. Among the various synthesis strategies, hierarchical assembly is particularly attractive for constructing MOF-based heterostructures, as it can achieve precise regulation of MOF-based heterostructured nanostructures. The hierarchical assembly significantly expands the compositional diversity of MOF-based heterostructures, which has high elasticity for lattice matching during the epitaxial growth of MOFs. This review focuses on the synthetic evolution mechanism of hierarchical assemblies of MOF-based nanoarchitectures. Subsequently, the precise control of pore structure, pore size, and morphology of MOF-based nanoarchitectures by hierarchical assembly is emphasized. Finally, possible solutions to address the challenges associated with heterogeneous interfaces are presented, and potential opportunities for innovative applications are proposed.

18.
Small ; 19(45): e2302692, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469019

RESUMO

This study presents a novel approach to decontaminate ferrocyanide-contaminated wastewater. The work effectively demonstrates the use of bimetallic Mo/Zr-UiO-66 as a super-adsorbent for rapid sequestration of Prussian blue, a frequently found iron complex in cyanide-contaminated soils/groundwater. The exceptional performance of Mo/Zr-UiO-66 is attributed to the insertion of secondary metallic sites, which deliver synergistic effects, benefiting the inherent qualities of the framework. Moreover, to extend the industrial applications of metal-organic frameworks (MOFs) in real-world scenarios, an approach is delivered to structure the nanocrystalline powders into MOF-based macrostructures. The work demonstrates an interfacial process to develop continuous MOF nanostructures on ordinary laboratory-grade filter papers. The novelty of the work lies in the development of robust free-standing filtration materials to purify PB dye-contaminated water. Additionally, the work embraces a circular economy concept to address problems related to resource scarcity, excessive waste production, and maintenance of economic benefits. Consequently, the PB dye-loaded adsorbent waste is re-employed for the adsorption of heavy metals (Pb2+ and Cd2+ ). Simultaneously, the study aims to address the problems related to the real-time handling of powdered adsorbents, and the generation of ecologically harmful secondary waste, thereby, progressing toward a more sustainable system.

19.
Small ; 19(49): e2304644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563823

RESUMO

High-efficiency adsorption of aromatic sulfur-containing compounds from liquid hydrocarbon fuels over metal-organic frameworks (MOFs) is challenging because of inert metal sites. A new method, the Ce-enhanced modulation of MOFs' microenvironment, is proposed to modulate the -COO···Cu(II)- coordination microenvironment of Hong Kong University of Science and Technology (HKUST-1) using Ce(III) as a molecular scalpel for fabricating abundant high-efficiency Cu(I) and Cu-coordination-unsaturated sites and improving the pore structures around adsorptive sites. The optimal CH-250 thus exhibits adsorptive capacities for 20.2, 28.0, and 58.3 mg S g-1 of thiophene, benzo-thiophene, and dibenzothiophene, respectively, which are superior to most reported MOFs, zeolites, and nanoporous carbons. The constructed Cu(I) sites show stronger affinity for dibenzothiophene (-0.86 eV) than the initial Cu(II) (-0.74 eV) for out-of-plane adsorption. Further, they are far stronger in-plane adsorption interactions in DBT/CH-250 (-0.90 eV) than those in DBT/HKUST-1 (-0.37 eV). Thus, molecular engineering for modulating the coordination microenvironment of MOFs shows great potential for adsorption desulfurization.

20.
Small ; 19(1): e2204649, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36354192

RESUMO

The construction of ordered hierarchical porous structures in metal-organic frameworks (MOFs) and their derivatives is highly promising to meet the low-density and high-performance demands of microwave absorption materials. However, traditional methods based on sacrificial templates or corrosive agents inevitably suffer from the collapse of the microporous framework and the accumulation of nanoparticles during the carbonization transformation, resulting in the deteriorating impedance match, which greatly limits the incident and attenuation of microwaves. Herein, an induced crystallization and controllable nanoarchitectonics strategy is employed to replace traditional growing-etching methods and successfully synthesize carbonized 3D-ordered macroporous Co@N-doped carbon (3DOM Co@NDC) based on the 3D-ordered template. The obtained 3D-ordered macroporous structure ensures the stable growth of hybrid carbon frameworks and CoC nanoparticles without collapse, preserves abundant interfaces for both the incident and attenuation performance, so as to significantly improve the impedance matching and absorption properties compared to conventional MOFs derivatives. The minimum reflection loss of 3DOM Co@NDC is -57.36 dB at the thickness of 1.9 mm, and the effective bandwidth is 7.36 GHz at 1.6 mm. Moreover, the innovative strategy to prepare 3D-ordered hierarchical macroporous structures opens up a new avenue for advanced MOFs-derived absorbers with excellent performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa