Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(27): 8427-8435, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920280

RESUMO

Metal selenides show outstanding sodium-ion storage performance when matched with an ether-based electrolyte. However, the intrinsic origin of improvement and deterministic interface characteristics have not been systematically elucidated. Herein, employing FeSe2 anode as the model system, the electrochemical kinetics of metal selenides in ether and ester-based electrolytes and associated solid electrolyte interphase (SEI) are investigated in detail. Based on the galvanostatic intermittent titration technique and in situ electrochemical impedance spectroscopy, it is found that the ether-based electrolyte can ensure fast Na+ transfer and low interface impedance. Additionally, the ether-derived thin and smooth double-layer SEI, which is critical in facilitating ion transport, maintaining structural stability, and inhibiting electrolyte overdecomposition, is concretely visualized by transmission electron microscopy, atomic force microscopy, and depth-profiling X-ray photoelectron spectroscopy. This work provides a deep understanding of the optimization mechanism of electrolytes, which can guide available inspiration for the design of practical electrode materials.

2.
Small ; 20(4): e2305021, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712116

RESUMO

The rapid evolution of smart grid system urges researchers on exploiting systems with properties of high-energy, low-cost, and eco-friendly beyond lithium-ion batteries. Under the circumstances, sodium- and potassium-ion batteries with the semblable work mechanism to commercial lithium-ion batteries, hold the merits of cost-effective and earth-abundant. As a result, it is deemed a promising candidate for large-scale energy storage devices. Exploiting appropriate active electrode materials is in the center of the spotlight for the development of batteries. Metal selenides with special structures and relatively high theoretical capacity have aroused broad interest and achieved great achievements. To push the smooth development of metal selenides and enhancement of the electrochemical performance of sodium- and potassium-ion batteries, it is vital to grasp the inherent properties and electrochemical mechanisms of these materials. Herein, the state-of-the-art development and challenges of metal selenides are summarized and discussed. Meanwhile, the corresponding electrochemical mechanism and future development directions are also highlighted.

3.
Small ; 20(5): e2306220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37727068

RESUMO

Atomic-scale interface engineering is a prominent strategy to address the large volume expansions and sluggish redox kinetics for reinforcing K-storage. Here, to accelerate charge transport and lower the activation energy, dual carbon-modified interfacial regions are synthesized with high lattice-matching degree, which is formed from a CoSe2 /FeSe2 heterostructure coated onto hollow carbon fibers. State-of-the-art characterization techniques and theoretical analysis, including ex-situ soft X-ray absorption spectroscopy, synchrotron X-ray tomography, ultrasonic transmission mapping, and density functional theory, are conducted to probe local atomic structure evolution, mechanical degradation mechanisms, and ion/electron migration pathways. The results suggest that the heterostructure composed of the same crystal system and space group can sharply regulate the redox kinetics of transition metal selenium and dual carbon-modified approach can tailor physicochemical degradation. Overall, this work presents the design of a stable heterojunction synergistic superior hollow carbon substrate, inspiring a pathway of interface engineering strategy toward high-performance electrode.

4.
Small ; 20(9): e2304390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845029

RESUMO

Exploring and developing novel strategies for constructing heterostructure electrocatalysts is still challenging for water electrolysis. Herein, a creative etching treatment strategy is adopted to construct NiSe2 /Ni0.85 Se heterostructure. The rich heterointerfaces between NiSe2 and Ni0.85 Se emerge strong electronic interaction, which easily induces the electron transfer from NiSe2 to Ni0.85 Se, and tunes the charge-state of NiSe2 and Ni0.85 Se. In the NiSe2 /Ni0.85 Se heterojunction nanomaterial, the higher charge-state Ni0.85 Se is capable of affording partial electrons to combine with hydrogen protons, inducing the rapid formation of H2 molecule. Accordingly, the lower charge-state NiSe2 in the NiSe2 /Ni0.85 Se heterojunction nanomaterial is more easily oxidized into high valence state Ni3+ during the oxygen evolution reaction (OER) process, which is beneficial to accelerate the mass/charge transfer and enhance the electrocatalytic activities towards OER. Theoretical calculations indicate that the heterointerfaces are conducive to modulating the electronic structure and optimizing the adsorption energy toward intermediate H* during the hydrogen evolution reaction (HER) process, leading to superior electrocatalytic activities. To expand the application of the NiSe2 /Ni0.85 Se-2h electrocatalyst, urea is served as the adjuvant to proceed with the energy-saving hydrogen production and pollutant degradation, and it is proven to be a brilliant strategy.

5.
Small ; 20(22): e2309448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362699

RESUMO

Hydrogen peroxide (H2O2) is a highly value-added and environmental-friendly chemical with various applications. The production of H2O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process. High selectivity Catalysts combining with superior activity are critical for the efficient electrosynthesis of H2O2. Earth-abundant transition metal selenides (TMSs) being discovered as a classic of stable, low-cost, highly active and selective catalysts for electrochemical 2e- ORR. These features come from the relatively large atomic radius of selenium element, the metal-like properties and the abundant reserves. Moreover, compared with the advanced noble metal or single-atom catalysts, the kinetic current density of TMSs for H2O2 generation is higher in acidic solution, which enable them to become suitable catalyst candidates. Herein, the recent progress of TMSs for ORR to H2O2 is systematically reviewed. The effects of TMSs electrocatalysts on the activity, selectivity and stability of ORR to H2O2 are summarized. It is intended to provide an insight from catalyst design and corresponding reaction mechanisms to the device setup, and to discuss the relationship between structure and activity.

6.
Small ; 20(27): e2310530, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38317526

RESUMO

Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2/CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2CO3 nucleation sites for homogeneous discharge product growth. The CoSe2/CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2, a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2, surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2/Li adsorption and low Li2CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2/CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.

7.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999035

RESUMO

In recent years, sodium-ion batteries (SIBs) have gained a foothold in specific applications related to lithium-ion batteries, thanks to continuous breakthroughs and innovations in materials by researchers. Commercial graphite anodes suffer from small interlayer spacing (0.334 nm), limited specific capacity (200 mAh g-1), and low discharge voltage (<0.1 V), making them inefficient for high-performance operation in SIBs. Hence, the current research focus is on seeking negative electrode materials that are compatible with the operation of SIBs. Many studies have been reported on the modification of transition metal selenides as anodes in SIBs, mainly targeting the issue of poor cycling life attributed to the volume expansion of the material during sodium-ion extraction and insertion processes. However, the intrinsic electronic structure of transition metal selenides also influences electron transport and sodium-ion diffusion. Therefore, modulating their electronic structure can fundamentally improve the electron affinity of transition metal selenides, thereby enhancing their rate performance in SIBs. This work provides a comprehensive review of recent strategies focusing on the modulation of electronic structures and the construction of heterogeneous structures for transition metal selenides. These strategies effectively enhance their performance metrics as electrodes in SIBs, including fast charging, stability, and first-cycle coulombic efficiency, thereby facilitating the development of high-performance SIBs.

8.
Molecules ; 29(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39064889

RESUMO

This study investigated the structural and electrochemical characteristics of binary and quaternary systems comprising nickel, cobalt, and iron selenides. The powders were obtained via a solvothermal route. X-ray diffraction (XRD) and Raman spectroscopy revealed significant phase diversity. It was observed that increasing the proportion of d-block metals in quaternary systems enhances structural entropy, potentially leading to more homogeneous and stable structures dominated by energetically preferred components such as nickel. The electrochemical analysis indicated that the binary system exhibited a reversible redox reaction, with nickel selenide-based samples demonstrating the highest electrochemically active surface area. Quaternary systems display varying degrees of electrochemical stability. An equal contribution of nickel, cobalt, and iron appears beneficial in achieving stable electrodes. This research contributes to understanding the relationship between transition metal selenides' structural, morphological, and electrochemical properties, providing insights into their potential applications in hydrogen generation.

9.
Small ; 19(4): e2206194, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437114

RESUMO

The powerful and rapid development of lithium-ion batteries (LIBs) in secondary batteries field makes lithium resources in short supply, leading to rising battery costs. Under the circumstances, sodium-ion batteries (SIBs) with low cost, inexhaustible sodium reserves, and analogous work principle to LIBs, have evolved as one of the most anticipated candidates for large-scale energy storage devices. Thereinto, the applicable electrode is a core element for the smooth development of SIBs. Among various anode materials, metal selenides (MSex ) with relatively high theoretical capacity and unique structures have aroused extensive interest. Regrettably, MSex suffers from large volume expansion and unwished side reactions, which result in poor electrochemistry performance. Thus, strategies such as carbon modification, structural design, voltage control as well as electrolyte and binder optimization are adopted to alleviate these issues. In this review, the synthesis methods and main reaction mechanisms of MSex are systematically summarized. Meanwhile, the major challenges of MSex and the corresponding available strategies are proposed. Furthermore, the recent research progress on layered and nonlayered MSex for application in SIBs is presented and discussed in detail. Finally, the future development focuses of MSex in the field of rechargeable ion batteries are highlighted.

10.
Small ; 19(15): e2207975, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36631278

RESUMO

Transition metal selenides anodes with fast reaction kinetics and high theoretical specific capacity are expected to solve mismatched kinetics between cathode and anode in Li-ion capacitors. However, transition metal selenides face great challenges in the dissolution and shuttle problem of lithium selenides, which is the same as Li-Se batteries. Herein, inspired by the density functional theory calculations, heterogeneous can enhance the adsorption of Li2 Se relative to single component selenide electrodes, thus inhibiting the dissolution and shuttle effect of Li2 Se. A heterostructure material (denoted as CoSe2 /SnSe) with the ability to evolve continuously (CoSe2 /SnSe→Co/Sn→Co/Li13 Sn5 ) is successfully designed by employing CoSnO3 -MOF as a precursor. Impressively, CoSe2 /SnSe heterostructure material delivers the ultrahigh reversible specific capacity of 510 mAh g-1 after 1000 cycles at the high current density of 4 A g-1 . In situ XRD reveals the continuous evolution of the interface based on the transformation and alloying reactions during the charging and discharging process. Visualizations of in situ disassembly experiments demonstrate that the continuously evolving interface inhibits the shuttle of Li2 Se. This research proposes an innovative approach to inhibit the dissolution and shuttling of discharge intermediates (Li2 Se) of metal selenides, which is expected to be applied to metal sulfides or Li-Se and Li-S energy storage systems.

11.
Small ; 19(26): e2207716, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36938701

RESUMO

Metal selenides are considered as one of the most promising anode materials for Na-ion batteries owing to high specific capacity and relatively higher electronic conductivity compared with metal sulfides or oxides. However, such anodes still suffer from huge volume change upon repeated Na+ insertion/extraction processes and simultaneously undergo severe shuttle effect of polyselenides, thus leading to poor electrochemical performance. Herein, a facile chemical-blowing and selenization strategy to fabricate 3D interconnected hybrids built from metal selenides (MSe, M = Mn, Co, Cr, Fe, In, Ni, Zn) nanoparticles encapsulated in in situ formed N-doped carbon foams (NCFs) is reported. Such hybrids not only provide ultrasmall active nanobuilding blocks (≈15 nm), but also efficiently anchor them inside the conductive NCFs, thus enabling both high-efficiency utilization of active components and high structural stability. On the other hand, Cu-driven replacement reaction is utilized for efficiently inhibiting the shuttle effect of polyselenides in ether-based electrolyte. Benefiting from the combined merits of the unique MSe@NCFs and the utilization of the conversion of metal selenides to copper selenides, the as-obtained hybrids (MnSe as an example) exhibit superior rate capability (386.6 mAh g-1 up to 8 A g-1 ) and excellent cycling stability (347.7 mAh g-1 at 4.0 A g-1 after 1200 cycles).

12.
Nanotechnology ; 34(18)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36669193

RESUMO

To enhance the performance of transition metal chalcogenide composite electrode material, a key point is a composite design and preparation based on the synergistic effect between the oxide and selenide materials. With a facile 'one step template-annealing' step, Ni3Se4, Ni0.6Zn0.4O and ZnO are simultaneously synthesized, by 500 °C annealing. With the increase of annealing temperature from 350 °C to 600 °C, nickel selenides change from NiSe2to Ni3Se4to NiSe. The charge storage capacity increases first and then decreases with the increase of annealing temperature, and the 500 °C annealing obtained three compound composite Ni3Se4/Ni0.6Zn0.4O/ZnO (NNZ-500) nanoparticle material displayed a high specific capacitance of 1089.2 F g-1at 1 A g-1, and excellent cycle stability of 99.8% capacitance retention after 2000 cycles at 5 A g-1. Moreover, an asymmetric supercapacitor was assembled with NNZ-500 as the positive electrode material and activated carbon as the negative electrode material. This kind of asymmetric supercapacitor demonstrated a high energy density of 53.4 Wh kg-1at 819.0 W kg-1, and cycle stability with 98.6% capacitance retention after 2000 cycles. This material preparation approach provides great potential for the future development of high performance transition metal composite electrode materials in energy storage applications.

13.
Nanotechnology ; 33(24)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35263734

RESUMO

Inferior electrical conductivity and large volume variation are two disadvantages of metal selenides. In this work, we have designed a core-shell structure of FeSe2@C composite with low cost using facile hydrothermal method. The FeSe2particles as the 'core' and the carbon layer as the 'shell' displayed good synergistic effect that attributed to alleviate volume expansion of electrode and improving the electrical conductivity, which achieved the fast potassium storage. The core-shell structural FeSe2@C electrode achieved 286 mA h g-1at 1 A g-1over 1000 cycles with 99.8% coulombic efficiency and delivered excellent rate capacity with 273 mA h g-1at 2 A g-1, which was ascribed to dispersed FeSe2particles and the strong carbon shell coating. This work will provide the basis for the further development of the application of metal selenides in the field of flexible electrodes.

14.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364334

RESUMO

Transition metal-based compounds with high theoretical capacitance and low cost represent one class of promising electrode materials for high-performance supercapacitors. However, their low intrinsic electrical conductivity impedes their capacitive effect and further limits their practical application. Rational regulation of their composition and structure is, therefore, necessary to achieve a high electrode performance. Herein, a well-designed carbon-encased mixed-metal selenide rooted with carbon nanotubes (Ni-Co-Se@C-CNT) was derived from nickel-cobalt bimetallic organic frameworks. Due to the unique porous structure, the synergistic effect of bimetal selenides and the in situ growth of carbon nanotubes, the composite exhibits good electrical conductivity, high structural stability and abundant redox active sites. Benefitting from these merits, the Ni-Co-Se@C-CNT exhibited a high specific capacity of 554.1 C g-1 (1108.2 F g-1) at 1 A g-1 and a superior cycling performance, i.e., 96.4% of the initial capacity was retained after 5000 cycles at 10 A g-1. Furthermore, a hybrid supercapacitor assembled with Ni-Co-Se@C-CNT cathode and activated carbon (AC) anode shows a superior energy density of 38.2 Wh kg-1 at 1602.1 W kg-1.

15.
Chemistry ; 27(11): 3745-3752, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33135204

RESUMO

Sodium- and potassium-ion batteries have attracted intensive attention recently as low-cost alternatives to lithium-ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g-1 at a current rate of 0.1 A g-1 and a remarkable rate performance with a capacity of 525 mA h g-1 at 20 A g-1 . As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g-1 at 0.4 A g-1 . Even at a high current rate of 5 A g-1 , a discharge capacity of 322 mA h g-1 can be achieved, which is among the best high-rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether-based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.

16.
Crit Rev Biotechnol ; 40(8): 1250-1264, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32854560

RESUMO

Microbial bio-transformations of the essential trace element selenium are now recognized to occur among a wide variety of microorganisms. These transformations are used to convert this element into its assimilated form of selenocysteine, which is at the active center of a number of key enzymes, and to produce selenium nanoparticles, quantum dots, metal selenides, and methylated selenium species that are indispensable for biotechnological and bioremediation applications. The focus of this review is to present the state-of-the-art of all aspects of the investigations into the bacterial transformations of selenium species, and to consider the characterization and biotechnological uses of these transformations and their products.


Assuntos
Biotecnologia , Selênio/metabolismo , Selenoproteínas/metabolismo , Transformação Bacteriana , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes
17.
Chemistry ; 26(39): 8579-8587, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32567104

RESUMO

Carbon-layer-coated porous Ni-doped CoSe2 (Ni-CoSe2 /C) nanospheres have been fabricated by a facile hydrothermal method followed by a new selenization strategy. The porous structure of Ni-CoSe2 /C is formed by the aggregation of many small particles (20-40 nm), which are not tightly packed together, but are interspersed with gaps. Moreover, the surfaces of these small particles are covered with a thin carbon layer. Ni-CoSe2 /C delivers superior rate performance (314.0 mA h g-1 at 20 A g-1 ), ultra-long cycle life (316.1 mA h g-1 at 10 A g-1 after 8000 cycles), and excellent full-cell performance (208.3 mA h g-1 at 0.5 A g-1 after 70 cycles) when used as an anode material for half/full sodium-ion batteries. The Na storage mechanism and kinetics have been confirmed by ex situ X-ray diffraction analysis, assessment of capacitance performance, and a galvanostatic intermittent titration technique (GITT). GITT shows that Na+ diffusion in the electrode material is a dynamic change process, which is associated with a phase transition during charge and discharge. The excellent electrochemical performance suggests that the porous Ni-CoSe2 /C nanospheres have great potential to serve as an electrode material for sodium-ion batteries.

18.
Small ; 15(33): e1901995, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31169987

RESUMO

Multiple transition metals containing chalcogenides have recently drawn boosted attraction as anodes for sodium ion batteries (SIBs). Their greatly enhanced electrochemical performances can be attributed to the superior intrinsic conductivities and richer redox reactions, comparative to mono metal chalcogenides. To employ various binary metals comprising selenides (B-TMSs) for SIBs, discovery of a simplistic, scalable and universal synthesis approach is highly desirable. Herein, a simple, facile, and comprehensive strategy to produce various combinations of nanostructured B-TMSs is presented. As a proof of concept, optimized, high surface area bearing, and hierarchical nanosheets of iron-nickel selenide (FNSe), iron-cobalt selenide, and nickel-cobalt selenide are produced and employed in SIBs. These B-TMSs exhibit adequately high energy capacities, excellent rate capabilities, and an extraordinarily stable life of 2600 cycles. As far as it is known, it is the first work to discuss sodium storage of FNSe, so various in situ and ex situ battery analyses are carried out to probe the sodium storage mechanism. When employed in sodium full batteries, these B-TMSs present reasonably high reversible specific capacities even after 100 cycles. Overall, the presented strategy will pave the way for facile synthesis of numerous binary transition metal chalcogenides that are the potential materials for energy storage and conversion systems.

19.
Chemistry ; 22(12): 4140-6, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26864320

RESUMO

A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders.

20.
Angew Chem Int Ed Engl ; 53(52): 14569-74, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25358619

RESUMO

The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa