Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(16): e2300137120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036998

RESUMO

Heme-containing integral membrane proteins are at the heart of many bioenergetic complexes and electron transport chains. The importance of these electron relay hubs across biology has inspired the design of de novo proteins that recreate their core features within robust, versatile, and tractable protein folds. To this end, we report here the computational design and in-cell production of a minimal diheme membrane cytochrome which successfully integrates into the cellular membrane of live bacteria. This synthetic construct emulates a four-helix bundle found in modern respiratory complexes but has no sequence homology to any polypeptide sequence found in nature. The two b-type hemes, which appear to be recruited from the endogenous heme pool, have distinct split redox potentials with values close to those of natural membrane-spanning cytochromes. The purified protein can engage in rapid biomimetic electron transport with small molecules, with other redox proteins, and with biologically relevant diffusive electron carriers. We thus report an artificial membrane metalloprotein with the potential to serve as a functional electron transfer module in both synthetic protocells and living systems.


Assuntos
Citocromos , Metaloproteínas , Citocromos/metabolismo , Oxirredução , Transporte de Elétrons , Metaloproteínas/metabolismo , Heme/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(30): e2205664119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862453

RESUMO

Many enzymes utilize redox-coupled centers for performing catalysis where these centers are used to control and regulate the transfer of electrons required for catalysis, whose untimely delivery can lead to a state incapable of binding the substrate, i.e., a dead-end enzyme. Copper nitrite reductases (CuNiRs), which catalyze the reduction of nitrite to nitric oxide (NO), have proven to be a good model system for studying these complex processes including proton-coupled electron transfer (ET) and their orchestration for substrate binding/utilization. Recently, a two-domain CuNiR from a Rhizobia species (Br2DNiR) has been discovered with a substantially lower enzymatic activity where the catalytic type-2 Cu (T2Cu) site is occupied by two water molecules requiring their displacement for the substrate nitrite to bind. Single crystal spectroscopy combined with MSOX (multiple structures from one crystal) for both the as-isolated and nitrite-soaked crystals clearly demonstrate that inter-Cu ET within the coupled T1Cu-T2Cu redox system is heavily gated. Laser-flash photolysis and optical spectroscopy showed rapid ET from photoexcited NADH to the T1Cu center but little or no inter-Cu ET in the absence of nitrite. Furthermore, incomplete reoxidation of the T1Cu site (∼20% electrons transferred) was observed in the presence of nitrite, consistent with a slow formation of NO species in the serial structures of the MSOX movie obtained from the nitrite-soaked crystal, which is likely to be responsible for the lower activity of this CuNiR. Our approach is of direct relevance for studying redox reactions in a wide range of biological systems including metalloproteins that make up at least 30% of all proteins.


Assuntos
Cobre , Nitrito Redutases , Nitritos , Catálise , Cobre/química , Nitrito Redutases/química , Nitritos/química , Oxirredução , Análise Espectral
3.
J Virol ; 97(12): e0139923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982624

RESUMO

IMPORTANCE: Metal-binding proteins are pivotal components with diverse functions in organisms, including viruses. Despite their significance, many metalloproteins in viruses remain uncharacterized, posing challenges to understanding viral systems. This study addresses this knowledge gap by identifying and analyzing metal-binding proteins and proteases in RNA viruses. The findings emphasize the prevalence of these proteins as essential functional classes within viruses and shed light on the role of metal ions and metalloproteins in viral replication and pathogenesis. Moreover, this research serves as a crucial foundation for further investigations in this field, offering the potential for developing innovative antiviral strategies. Additionally, the study enhances our understanding of the distribution and evolutionary patterns of metal-binding proteases in major human viruses. Continually exploring metal-binding proteomes across diverse viruses will deepen our knowledge of metal-dependent biological processes and provide valuable insights for combating viral infections, including respiratory viruses and other life-threatening diseases.


Assuntos
Proteínas de Transporte , Endopeptidases , Metais , Vírus de RNA , Humanos , Proteínas de Transporte/metabolismo , Endopeptidases/metabolismo , Metais/química , Metais/metabolismo , Proteoma/metabolismo , Vírus de RNA/enzimologia , Vírus de RNA/crescimento & desenvolvimento , Vírus de RNA/metabolismo , Vírus de RNA/patogenicidade , Replicação Viral
4.
Appl Environ Microbiol ; 90(8): e0051624, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39023267

RESUMO

Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.IMPORTANCEProteins that catalyze biochemical reactions often require transition metals that can have a high affinity for sulfur, another required element for life. Thus, the availability of metals and sulfur are intertwined and can have large impacts on an organismismal biochemistry. Methanogens often occupy anoxic, sulfide-rich (euxinic) environments that favor the precipitation of transition metals as metal sulfides, thereby creating presumed metal limitation. Recently, several methanogens have been shown to acquire iron and sulfur from pyrite, an abundant iron-sulfide mineral that was traditionally considered to be unavailable to biology. The work presented here provides new insights into the distribution of metalloproteins, and metal uptake of Methanosarcina barkeri Fusaro grown under euxinic or pyritic growth conditions. Thorough characterizations of this methanogen under different metal and sulfur conditions increase our understanding of the influence of metal availability on methanogens, and presumably other anaerobes, that inhabit euxinic environments.


Assuntos
Ferro , Metaloproteínas , Methanosarcina barkeri , Sulfetos , Enxofre , Enxofre/metabolismo , Ferro/metabolismo , Methanosarcina barkeri/metabolismo , Methanosarcina barkeri/crescimento & desenvolvimento , Metaloproteínas/metabolismo , Sulfetos/metabolismo , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Minerais/metabolismo , Proteômica
5.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337612

RESUMO

Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Metais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Metais/metabolismo , Animais , Íons/metabolismo , Estresse Oxidativo/efeitos dos fármacos
6.
Trends Biochem Sci ; 44(12): 1022-1040, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31307903

RESUMO

Metalloproteins are crucial for life. The mutual relationship between metal ions and proteins makes metalloproteins able to accomplish key processes in biological systems, often very difficult to reproduce with inorganic coordination compounds under mild conditions. Taking inspiration from nature, many efforts have been devoted to developing artificial molecules as metalloprotein mimics. We have witnessed an explosion of protein design strategies leading to designed metalloproteins, ranging from stable structures to functional molecules. This review illustrates the most recent results for inserting metalloprotein functions in designed and engineered protein scaffolds. The selected examples highlight the potential of different approaches for the construction of artificial molecules capable of simulating and even overcoming the features of natural metalloproteins.


Assuntos
Metaloproteínas , Engenharia de Proteínas , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo
7.
J Biol Chem ; 298(9): 102291, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868564

RESUMO

[NiFe]-hydrogenases (Hyds) comprise a small and a large subunit. The latter harbors the biologically unique [NiFe](CN)2CO active-site cofactor. The maturation process includes the assembly of the [Fe](CN)2CO cofactor precursor, nickel binding, endoproteolytic cleavage of the large subunit, and dimerization with the small subunit to yield active enzyme. The biosynthesis of the [Fe](CN)2CO moiety of [NiFe]-Hyd-1 and Hyd-2 occurs on the scaffold complex HybG-HypD (GD), whereas the HypC-HypD complex is specific for the assembly of Hyd-3. The metabolic source and the route for delivering iron to the active site remain unclear. To investigate the maturation process of O2-tolerant Hyd-1 from Escherichia coli, we developed an enzymatic in vitro reconstitution system that allows for the synthesis of Hyd-1 using only purified components. Together with this in vitro reconstitution system, we employed biochemical analyses, infrared spectroscopy (attenuated total reflection FTIR), mass spectrometry (MS), and microscale thermophoresis to monitor the iron transfer during the maturation process and to understand how the [Fe](CN)2CO cofactor precursor is ultimately incorporated into the large subunit. We demonstrate the direct transfer of iron from 57Fe-labeled GD complex to the large subunit of Hyd-1. Our data reveal that the GD complex exclusively interacts with the large subunit of Hyd-1 and Hyd-2 but not with the large subunit of Hyd-3. Furthermore, we show that the presence of iron in the active site is a prerequisite for nickel insertion. Taken together, these findings reveal how the [Fe](CN)2CO cofactor precursor is transferred and incorporated into the active site of [NiFe]-Hyd.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Ferro , Chaperonas Moleculares , Oxirredutases , Transporte Biológico , Domínio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Ferro/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo
8.
J Comput Chem ; 44(8): 912-926, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36495007

RESUMO

Zn2+ is one of the most versatile biologically available metal ions, but accurate modeling of Zn2+ -containing metalloproteins at the biomolecular force field level can be challenging. Since most Zn2+ models are parameterized in bulk solvent, in-depth knowledge about their performance in a protein environment is limited. Thus, we systematically investigate here the behavior of non-polarizable Zn2+ models for their ability to reproduce experimentally determined metal coordination and ligand binding in metalloproteins. The benchmarking is performed in challenging environments, including mono- (carbonic anhydrase II) and bimetallic (metallo-ß-lactamase VIM-2) ligand binding sites. We identify key differences in the performance between the Zn2+ models with regard to the preferred ligating atoms (charged/non-charged), attraction of water molecules, and the preferred coordination geometry. Based on these results, we suggest suitable simulation conditions for varying Zn2+ site geometries that could guide the further development of biomolecular Zn2+ models.


Assuntos
Metaloproteínas , Zinco , Zinco/química , Ligantes , Benchmarking , Sítios de Ligação , Metaloproteínas/química
9.
J Synchrotron Radiat ; 30(Pt 2): 449-456, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891859

RESUMO

The feasibility of X-ray absorption fine-structure (XAFS) experiments of ultra-dilute metalloproteins under in vivo conditions (T = 300 K, pH = 7) at the BL-9 bending-magnet beamline (Indus-2) is reported, using as an example analogous synthetic Zn (0.1 mM) M1dr solution. The (Zn K-edge) XAFS of M1dr solution was measured with a four-element silicon drift detector. The first-shell fit was tested and found to be robust against statistical noise, generating reliable nearest-neighbor bond results. The results are found to be invariant between physiological and non-physiological conditions, which confirms the robust coordination chemistry of Zn with important biological implications. The scope of improving spectral quality for accommodation of higher-shell analysis is addressed.


Assuntos
Metaloproteínas , Síncrotrons , Metaloproteínas/química , Raios X , Radiografia , Índia
10.
J Exp Bot ; 74(19): 6040-6051, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37586035

RESUMO

The high phenotypic plasticity developed by plants includes rapid responses and adaptations to aggressive or changing environments. To achieve this, they evolved extremely efficient mechanisms of signaling mediated by a wide range of molecules, including small signal molecules. Among them, hydrogen cyanide (HCN) has been largely ignored due to its toxic characteristics. However, not only is it present in living organisms, but it has been shown that it serves several functions in all kingdoms of life. Research using model plants has changed the traditional point of view, and it has been demonstrated that HCN plays a positive role in the plant response to pathogens independently of its toxicity. Indeed, HCN induces a response aimed at protecting the plant from pathogen attack, and the HCN is provided either exogenously (in vitro or by some cyanogenic bacteria species present in the rhizosphere) or endogenously (in reactions involving ethylene, camalexin, or other cyanide-containing compounds). The contribution of different mechanisms to HCN function, including a new post-translational modification of cysteines in proteins, namely S-cyanylation, is discussed here. This work opens up an expanding 'HCN field' of research related to plants and other organisms.


Assuntos
Cianeto de Hidrogênio , Venenos , Cianeto de Hidrogênio/metabolismo , Transdução de Sinais , Plantas/metabolismo , Rizosfera
11.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897703

RESUMO

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Assuntos
Elementos da Série Actinoide , Metaloproteínas , Quelantes , Elementos da Série Actinoide/química , Minerais , Carbonato de Cálcio , Carbonatos
12.
Biometals ; 36(4): 903-912, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36725769

RESUMO

The COVID-19 pandemic has generated a major interest in designing inhibitors to prevent SARS-CoV-2 binding on host cells to protect against infection. One promising approach to such research utilizes molecular dynamics simulation to identify potential inhibitors that can prevent the interaction between spike (S) protein on the virus and angiotensin converting enzyme 2 (ACE2) receptor on the host cells. In these studies, many groups have chosen to exclude the ACE2-bound zinc (Zn) ion, which is critical for its enzymatic activity. While the relatively distant location of Zn ion from the S protein binding site (S1 domain), combined with the difficulties in modeling this ion has motivated the decision of exclusion, Zn can potentially contribute to the structural stability of the entire protein, and thus, may have implications on S protein-ACE2 interaction. In this study, the authors model both the ACE2-S1 and ACE2-inhibitor (mAb) system to investigate if there are variations in structure and the readouts due to the presence of Zn ion. Although distant from the S1 or inhibitor binding region, inclusion/exclusion of Zn has statistically significant effects on the structural stability and binding free energy in these systems. In particular, the binding free energy of the ACE2-S1 and ACE2-inhibitor structures is - 3.26 and - 14.8 kcal/mol stronger, respectively, in the Zn-bound structure than in the Zn-free structures. This finding suggests that including Zn may be important in screening potentially inhibitors and may be particularly important in modeling monoclonal antibodies, which may be more sensitive to changes in antigen structure.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Pandemias , Zinco , Ligação Proteica
13.
Angew Chem Int Ed Engl ; 62(51): e202314819, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37962296

RESUMO

[FeFe]-hydrogenases efficiently catalyze the reversible oxidation of molecular hydrogen. Their prowess stems from the intricate H-cluster, combining a [Fe4 S4 ] center with a binuclear iron center ([2Fe]H ). In the latter, each iron atom is coordinated by a CO and CN ligand, connected by a CO and an azadithiolate ligand. The synthesis of this active site involves a unique multiprotein assembly, featuring radical SAM proteins HydG and HydE. HydG initiates the transformation of L-tyrosine into cyanide and carbon monoxide to generate complex B, which is subsequently transferred to HydE to continue the biosynthesis of the [2Fe]H -subcluster. Due to its instability, complex B isolation for structural or spectroscopic characterization has been elusive thus far. Nevertheless, the use of a biomimetic analogue of complex B allowed circumvention of the need for the HydG protein during in vitro functional investigations, implying a similar structure for complex B. Herein, we used the HydE protein as a nanocage to encapsulate and stabilize the complex B product generated by HydG. Using X-ray crystallography, we successfully determined its structure at 1.3 Šresolution. Furthermore, we demonstrated that complex B is directly transferred from HydG to HydE, thus not being released into the solution post-synthesis, highlighting a transient interaction between the two proteins.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Ligantes , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas/metabolismo , Ferro/química , Compostos Ferrosos/metabolismo , Proteínas Ferro-Enxofre/química
14.
Infect Immun ; 90(10): e0009922, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069592

RESUMO

Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.


Assuntos
Infecções Estafilocócicas , Staphylococcus lugdunensis , Humanos , Camundongos , Animais , Staphylococcus lugdunensis/genética , Proteínas Hemolisinas/genética , Coagulase , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Metaloproteases , Peptídeos , Imunidade Inata , Proteínas de Bactérias/genética , Mamíferos
15.
Biochem Biophys Res Commun ; 635: 277-282, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36308907

RESUMO

X-ray fluorescence holography (XFH) is a relatively new technique capable of providing unique three-dimensional structural information around specific atoms that act as a light source in crystalline samples. So far, XFH has typically been applied to inorganic materials such as dopants in metals and semiconductors. Here, we investigate the possibility of using XFH to visualize the metal active site in sperm whale myoglobin (Mb), a monomeric oxygen storage heme protein. We demonstrate that the atomic images reconstructed from the hologram data of crystals of carbonmonoxy myoglobin (MbCO) are moderately consistent with the crystal structure, which is also determined in this study by X-ray crystallography in the near-atomic resolution, as well as simulation results. These results open up a new avenue for the application of XFH to local atomic and electronic structure imaging of metal-sites in biomolecules.


Assuntos
Holografia , Mioglobina , Mioglobina/química , Raios X , Holografia/métodos , Cristalografia por Raios X , Heme/química , Metais , Conformação Proteica
16.
Chembiochem ; 23(18): e202200197, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35816250

RESUMO

Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.


Assuntos
Peróxido de Hidrogênio , Mioglobina , Aminoácidos , Guaiacol , Heme/química , Peróxido de Hidrogênio/química , Manganês , Mioglobina/química , Mioglobina/genética , Mioglobina/metabolismo , Peroxidases/metabolismo
17.
Chembiochem ; 23(16): e202200290, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714117

RESUMO

The transcriptional regulator CueR is activated by the binding of CuI , AgI , or AuI to two cysteinates in a near-linear fashion. The C-terminal CCHHRAG sequence in Escherichia coli CueR present potential additional metal binding ligands and here we explore the effect of deleting this fragment on the binding of AgI to CueR. CD spectroscopic and ESI-MS data indicate that the high AgI -binding affinity of WT-CueR is significantly reduced in Δ7C-CueR.[111 Ag PAC spectroscopy demonstrates that the WT-CueR metal site structure (AgS2 ) is conserved, but less populated in the truncated variant. Thus, the function of the C-terminal fragment may be to stabilize the two-coordinate metal site for cognate monovalent metal ions. In a broader perspective this is an example of residues beyond the second coordination sphere affecting metal site physicochemical properties while leaving the structure unperturbed.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Transativadores , Sítios de Ligação , Cobre/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ouro/química , Metais/metabolismo , Prata/química , Transativadores/metabolismo
18.
Chembiochem ; 23(12): e202200165, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35475313

RESUMO

Cobalt is a trace transition metal. Although it is not abundant on earth, tens of cobalt-containing proteins exist in life. Moreover, the characteristic spectrum of Co(II) ion makes it a powerful probe for the characterization of metal-binding proteins through the formation of cobalt-ligand bonds. Since most of these natural and artificial cobalt-containing proteins are stable, we believe that these cobalt-ligand bonds in the protein system are also mechanically stable. To prove this, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to directly measure the rupture force of Co(II)-thiolate bond in Co-substituted rubredoxin (CoRD). By combining the chemical denature/renature method for building metalloprotein and cysteine coupling-based polyprotein construction strategy, we successfully prepared the polyprotein sample (CoRD)n suitable for single-molecule studies. Thus, we quantified the strength of Co(II)-thiolate bonds in rubredoxin with a rupture force of ∼140 pN, revealing that it is a mechanostable chemical bond. In addition, the Co-S bond is more labile than the Zn-S bond in proteins, similar to the result from the metal-competing titration experiment.


Assuntos
Metaloproteínas , Rubredoxinas , Cobalto/química , Ligantes , Metaloproteínas/química , Metais , Poliproteínas , Rubredoxinas/química , Análise Espectral/métodos
19.
Chemistry ; 28(40): e202200105, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35486702

RESUMO

Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.


Assuntos
Compostos Organometálicos , Vanádio , Compostos Organometálicos/química , Fenantrolinas , Proteínas , Tripsina , Vanádio/química , Raios X
20.
Mol Cell Biochem ; 477(9): 2235-2248, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461429

RESUMO

Hydrogen sulfide (H2S), previously recognized as a toxic gas, has emerged as an important gaseous signaling molecule along with nitric oxide, carbon monoxide and also hydrogen. H2S can be endogenously produced in the mammalian body at a very low level for various pathophysiological processes. Notably, H2S can interact with several essential metals in the body such as iron, copper, nickel, and zinc to carry out specific functions. The interactions of H2S with metal-binding proteins have been shown to aid in its signal transduction and cellular metabolism. In addition, H2S is capable of providing a cytoprotective role against metal toxicity. As the research in the field of H2S signaling in biology and medicine increases, much progresses have been developed for detecting H2S via interaction with metals. In this review, the interaction of H2S with metals, specifically in regard to metal-driven metabolism of H2S, the protection against metal toxicity by H2S and the detection of H2S using metals will be discussed. Discovering the interactions of this gasotransmitter with metals is important for determining the mechanisms underlying the cellular functions of H2S as well as developing novel therapeutic avenues.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Animais , Monóxido de Carbono/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mamíferos/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa