Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Med ; 23(5): 1641-1647, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36088392

RESUMO

BACKGROUND: Metastasis is the main cause of breast cancer (BC) mortality. Increasing evidence points to a role of syndecan-1 (CD138) expression as a prognostic marker involved in BC tissue and leptomeningeal metastasis. Aim of this study was to investigate and compare syndecan-1 tissue expression and localization in primary and secondary BC, focusing on brain metastases. METHODS: Syndecan-1 expression was determined by immunohistochemistry. Focal vs diffuse (< or > 50% of cancer cells, respectively) pattern of expression, cellular localization (cytoplasm vs membrane) and intensity of immunostaining on neoplastic cells were evaluated. Moreover, the extent and pattern of expression of syndecan-1 were compared between primary tumors and paired metastases and correlated with the tumor intrinsic subtype. RESULTS: A total of 23 cases, 10 with paired primary and metastatic tumor and 13 brain metastases, were evaluated. Syndecan-1 was expressed in both primary and metastatic BC. A diffuse cytoplasmic expression was observed in most primary BCs; by contrast, all metastatic lesions showed a membrane pattern of expression, suggesting a shift in cellular localization of syndecan-1 during the metastatic process. Concerning the extent of expression, we observed in metastatic lesions, a trend of association between intrinsic subtypes and extent of positivity. In particular, both BC characterized by overexpression of HER2 and triple-negative tumors were correlated with a diffuse pattern of expression with a moderate to strong intensity. CONCLUSION: A diffuse cytoplasmic expression was observed in most primary BCs; by contrast, all metastatic lesions showed a membrane pattern of expression, suggesting a shift in cellular localization of syndecan-1 during the metastatic process.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Feminino , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Imuno-Histoquímica , Prognóstico , Sindecana-1/metabolismo
2.
Cells ; 12(16)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37626840

RESUMO

Tissue engineering has emerged as an indispensable tool for the reconstruction of organ-specific environments. Organ-derived extracellular matrices (ECM) and, especially, decellularized tissues (DCL) are recognized as the most successful biomaterials in regenerative medicine, as DCL preserves the most essential organ-specific ECM properties such as composition alongside biomechanics characterized by stiffness and porosity. Expansion of the DCL technology to cancer biology research, drug development, and nanomedicine is pending refinement of the existing DCL protocols whose reproducibility remains sub-optimal varying from organ to organ. We introduce a facile decellularization protocol universally applicable to murine organs, including liver, lungs, spleen, kidneys, and ovaries, with demonstrated robustness, reproducibility, high purification from cell debris, and architecture preservation, as confirmed by the histological and SEM analysis. The biomechanical properties of as-produced DCL organs expressed in terms of the local and total stiffness were measured using our facile methodology and were found well preserved in comparison with the intact organs. To demonstrate the utility of the developed DCL model to cancer research, we engineered three-dimensional tissue constructs by recellularization representative decellularized organs and collagenous hydrogel with human breast cancer cells of pronounced mesenchymal (MDA-MB-231) or epithelial (SKBR-3) phenotypes. The biomechanical properties of the DCL organs were found pivotal to determining the cancer cell fate and progression. Our histological and scanning electron microscopy (SEM) study revealed that the larger the ECM mean pore size and the smaller the total stiffness (as in lung and ovary), the more proliferative and invasive the mesenchymal cells became. At the same time, the low local stiffness ECMs (ranged 2.8-3.6 kPa) did support the epithelial-like SKBR-3 cells' viability (as in lung and spleen), while stiff ECMs did not. The total and local stiffness of the collagenous hydrogel was measured too low to sustain the proliferative potential of both cell lines. The observed cell proliferation patterns were easily interpretable in terms of the ECM biomechanical properties, such as binding sites, embedment facilities, and migration space. As such, our three-dimensional tissue engineering model is scalable and adaptable for pharmacological testing and cancer biology research of metastatic and primary tumors, including early metastatic colonization in native organ-specific ECM.


Assuntos
Neoplasias , Baço , Humanos , Feminino , Animais , Camundongos , Reprodutibilidade dos Testes , Sítios de Ligação , Materiais Biocompatíveis , Hidrogéis
3.
Cell Rep Med ; 4(3): 100977, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36921599

RESUMO

Although breast cancer mortality is largely caused by metastasis, clinical decisions are based on analysis of the primary tumor and on lymph node involvement but not on the phenotype of disseminated cells. Here, we use multiplex imaging mass cytometry to compare single-cell phenotypes of primary breast tumors and matched lymph node metastases in 205 patients. We observe extensive phenotypic variability between primary and metastatic sites and that disseminated cell phenotypes frequently deviate from the clinical disease subtype. We identify single-cell phenotypes and spatial organizations of disseminated tumor cells that are associated with patient survival and a weaker survival association for high-risk phenotypes in the primary tumor. We show that p53 and GATA3 in lymph node metastases provide prognostic information beyond clinical classifiers and can be measured with standard methods. Molecular characterization of disseminated tumor cells is an untapped source of clinically applicable prognostic information for breast cancer.


Assuntos
Linfonodos , Humanos , Metástase Linfática/patologia , Prognóstico , Linfonodos/diagnóstico por imagem , Linfonodos/patologia
4.
Cancers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36900406

RESUMO

Circulating tumor cells (CTCs) are indicators of metastatic spread and progression. In a longitudinal, single-center trial of patients with metastatic breast cancer starting a new line of treatment, a microcavity array was used to enrich CTCs from 184 patients at up to 9 timepoints at 3-month intervals. CTCs were analyzed in parallel samples from the same blood draw by imaging and by gene expression profiling to capture CTC phenotypic plasticity. Enumeration of CTCs by image analysis relying primarily on epithelial markers from samples obtained before therapy or at 3-month follow-up identified the patients at the highest risk of progression. CTC counts decreased with therapy, and progressors had higher CTC counts than non-progressors. CTC count was prognostic primarily at the start of therapy in univariate and multivariate analyses but had less prognostic utility at 6 months to 1 year later. In contrast, gene expression, including both epithelial and mesenchymal markers, identified high-risk patients after 6-9 months of treatment, and progressors had a shift towards mesenchymal CTC gene expression on therapy. Cross-sectional analysis showed higher CTC-related gene expression in progressors 6-15 months after baseline. Furthermore, patients with higher CTC counts and CTC gene expression experienced more progression events. Longitudinal time-dependent multivariate analysis indicated that CTC count, triple-negative status, and CTC expression of FGFR1 significantly correlated with inferior progression-free survival while CTC count and triple-negative status correlated with inferior overall survival. This highlights the utility of protein-agnostic CTC enrichment and multimodality analysis to capture the heterogeneity of CTCs.

5.
Cancers (Basel) ; 13(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34359593

RESUMO

The majority of cancer-related deaths are the result of metastases (i.e., dissemination and establishment of tumor cells at distant sites from the origin), which develop through a multi-step process classically termed the metastatic cascade. The respective contributions of each step to the metastatic process are well described but are also currently not completely understood. Is there, for example, a critical phase that disproportionately affects the probability of the development of metastases in individual patients? Here, we address this question using a modified Drake equation, initially formulated by the astrophysicist Frank Drake to estimate the probability of the emergence of intelligent civilizations in the Milky Way. Using simulations based on realistic parameter values obtained from the literature for breast cancer, we examine, under the linear progression hypothesis, the contribution of each component of the metastatic cascade. Simulations demonstrate that the most critical parameter governing the formation of clinical metastases is the survival duration of circulating tumor cells (CTCs).

6.
Front Oncol ; 10: 165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133298

RESUMO

Tumor metastases represent the major cause of cancer-related mortality, confirming the urgent need to identify key molecular pathways and cell-associated networks during the early phases of the metastatic process to develop new strategies to either prevent or control distal cancer spread. Several data revealed the ability of cancer cells to establish a favorable microenvironment, before their arrival in distant organs, by manipulating the cell composition and function of the new host tissue where cancer cells can survive and outgrow. This predetermined environment is termed "pre-metastatic niche" (pMN). pMN development requires that tumor-derived soluble factors, like cytokines, growth-factors and extracellular vesicles, genetically and epigenetically re-program not only resident cells (i.e., fibroblasts) but also non-resident cells such as bone marrow-derived cells. Indeed, by promoting an "emergency" myelopoiesis, cancer cells switch the steady state production of blood cells toward the generation of pro-tumor circulating myeloid cells defined as myeloid-derived suppressor cells (MDSCs) able to sustain tumor growth and dissemination. MDSCs are a heterogeneous subset of myeloid cells with immunosuppressive properties that sustain metastatic process. In this review, we discuss current understandings of how MDSCs shape and promote metastatic dissemination acting in each fundamental steps of cancer progression from primary tumor to metastatic disease.

7.
Biomolecules ; 10(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859065

RESUMO

Despite research and clinical advances during recent decades, bone cancers remain a leading cause of death worldwide. There is a low survival rate for patients with primary bone tumors such as osteosarcoma and Ewing's sarcoma or secondary bone tumors such as bone metastases from prostate carcinoma. Gap junctions are specialized plasma membrane structures consisting of transmembrane channels that directly link the cytoplasm of adjacent cells, thereby enabling the direct exchange of small signaling molecules between cells. Discoveries of human genetic disorders due to genetic mutations in gap junction proteins (connexins) and experimental data using connexin knockout mice have provided significant evidence that gap-junctional intercellular communication (Gj) is crucial for tissue function. Thus, the dysfunction of Gj may be responsible for the development of some diseases. Gj is thus a main mechanism for tumor cells to communicate with other tumor cells and their surrounding microenvironment to survive and proliferate. If it is well accepted that a low level of connexin expression favors cancer cell proliferation and therefore primary tumor development, more evidence is suggesting that a high level of connexin expression stimulates various cellular process such as intravasation, extravasation, or migration of metastatic cells. If so, connexin expression would facilitate secondary tumor dissemination. This paper discusses evidence that suggests that connexin 43 plays an antagonistic role in the development of primary bone tumors as a tumor suppressor and secondary bone tumors as a tumor promoter.


Assuntos
Neoplasias Ósseas/metabolismo , Conexina 43/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Remodelação Óssea , Comunicação Celular , Movimento Celular/genética , Proliferação de Células , Conexina 43/química , Conexina 43/deficiência , Conexina 43/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Junções Comunicantes/química , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
8.
J Bone Oncol ; 12: 83-90, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30123735

RESUMO

Osteosarcoma is a rare primary bone tumor, which mainly affects children and adolescents and has a poor prognosis, especially for patients with metastatic disease. A poor therapeutic response to the conventional chemotherapy is observed with the development of lung metastases, highlighting the need for improving the current regimens and the identification of early markers of the recurrent and metastatic disease. Circulating Tumour Cells (CTCs) play a key role in the metastatic process and could be powerful biomarkers of the progressive disease. The present study aimed to isolate CTCs by using a pre-clinical model of human osteosarcoma and to monitor their kinetic of release and their modulation by ifosfamide. CTCs were detectable into the bloodstream before any palpable primary tumors. Ifosfamide increased CTCs count and in contrast decreased the number of lung tumor nodules. On established tumors, ifosfamide slowed down the tumour growth and did not modulate CTC count that could be explained by a release of cancer cells from the primary tumour with reduced properties for inducing lung metastases. This report highlights the biological interest of CTCs in osteosarcoma.

9.
J Oral Maxillofac Pathol ; 21(3): 463-464, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29391739

RESUMO

Cancer is one of the most life threatening diseases afflicting mankind. Oral carcinogenesis is a multifactorial process involving numerous genetic events that alter normal functions of oncogenes and tumour suppressor genes. These changes lead to a cell phenotype with increased cell proliferation, with loss of cell cohesion, and infiltration of adjacent tissue thus causing distant metastasis. The fact that cancer patients might develop metastasis after years or even decades from diagnosis of the primary tumor makes the metastatic process even more complex and the disease more deadly. The promise of this article is to enhance the understanding on molecular mechanisms underlying metastasis and provide a better approach towards development of novel therapeutic treatment modalities.

10.
Mol Oncol ; 10(3): 418-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26809472

RESUMO

Over the past decade, technically reliable circulating tumor cell (CTC) detection methods allowed the collection of large datasets of CTC counts in cancer patients. These data can be used either as a dynamic prognostic biomarker or as tumor material for "liquid biopsy". Breast cancer appears to be the cancer type in which CTC have been the most extensively studied so far, with level-of-evidence-1 studies supporting the clinical validity of CTC count in both early and metastatic stage. This review summarizes and discusses the clinical results obtained in breast cancer patients, the issues faced by the molecular characterization of CTC and the biological findings about cancer biology and metastasis that were obtained from CTC.


Assuntos
Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/patologia , Animais , Biópsia/métodos , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/patologia , Prognóstico
12.
Oncoscience ; 1(12): 777-802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25621294

RESUMO

Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa