Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Annu Rev Biochem ; 87: 645-676, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29668305

RESUMO

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Quelantes/química , Genoma Bacteriano , Homeostase , Imidazóis/química , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Modelos Biológicos , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/genética , Óperon , Transporte Proteico
2.
Proc Natl Acad Sci U S A ; 119(13): e2123566119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35320042

RESUMO

SignificanceMethanobactins (Mbns), copper-binding peptidic compounds produced by some bacteria, are candidate therapeutics for human diseases of copper overload. The paired oxazolone-thioamide bidentate ligands of methanobactins are generated from cysteine residues in a precursor peptide, MbnA, by the MbnBC enzyme complex. MbnBC activity depends on the presence of iron and oxygen, but the catalytically active form has not been identified. Here, we provide evidence that a dinuclear Fe(II)Fe(III) center in MbnB, which is the only representative of a >13,000-member protein family to be characterized, is responsible for this reaction. These findings expand the known roles of diiron enzymes in biology and set the stage for mechanistic understanding, and ultimately engineering, of the MbnBC biosynthetic complex.


Assuntos
Cisteína , Oxazolona , Cobre/metabolismo , Compostos Férricos/química , Humanos , Imidazóis , Oligopeptídeos , Oxigênio/metabolismo , Tioamidas
3.
Gastroenterology ; 165(1): 187-200.e7, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966941

RESUMO

BACKGROUND & AIMS: Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS: Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS: We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS: ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.


Assuntos
Degeneração Hepatolenticular , Ratos , Animais , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre , Eliminação Hepatobiliar , Fígado/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico
4.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542906

RESUMO

(1) Background: Particulate methane monooxygenase (pMMO) has a strong dependence on the natural electron transfer path and is prone to denaturation, which results in its redox activity centers being unable to transfer electrons with bare electrodes directly and making it challenging to observe an electrochemical response; (2) Methods: Using methanobactin (Mb) as the electron transporter between gold electrodes and pMMO, a bionic interface with high biocompatibility and stability was created. The Mb-AuNPs-modified functionalized gold net electrode as a working electrode, the kinetic behaviors of pMMO bioelectrocatalysis, and the effect of Mb on pMMO were analyzed. The CV tests were performed at different scanning rates to obtain electrochemical kinetics parameters. (3) Results: The values of the electron transfer coefficient (α) and electron transfer rate constant (ks) are relatively large in test environments containing only CH4 or O2. In contrast, in the test environment containing both CH4 and O2, the bioelectrocatalysis of pMMO is a two-electron transfer process with a relatively small α and ks; (4) Conclusions: It was inferred that Mb formed the complex with pMMO. More importantly, Mb not only played a role in electron transfer but also in stabilizing the enzyme structure of pMMO and maintaining a specific redox state. Furthermore, the continuous catalytic oxidation of natural substrate methane was realized.


Assuntos
Ouro , Imidazóis , Nanopartículas Metálicas , Oligopeptídeos , Oxigenases , Ouro/química , Cobre/química , Nanopartículas Metálicas/química , Oxirredução , Minerais , Metano/química , Eletrodos
5.
Appl Environ Microbiol ; 89(12): e0160123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38014956

RESUMO

IMPORTANCE: Aerobic methanotrophs play a critical role in the global carbon cycle, particularly in controlling net emissions of methane to the atmosphere. As methane is a much more potent greenhouse gas than carbon dioxide, there is increasing interest in utilizing these microbes to mitigate future climate change by increasing their ability to consume methane. Any such efforts, however, require a detailed understanding of how to manipulate methanotrophic activity. Herein, we show that methanotrophic activity is strongly controlled by MmoD, i.e., MmoD regulates methanotrophy through the post-transcriptional regulation of the soluble methane monooxygenase and controls the ability of methanotrophs to collect copper. Such data are likely to prove quite useful in future strategies to enhance the use of methanotrophs to not only reduce methane emissions but also remove methane from the atmosphere.


Assuntos
Methylosinus trichosporium , Methylosinus trichosporium/genética , Oxigenases/genética , Metano , Cobre
6.
Appl Environ Microbiol ; 88(7): e0234621, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285718

RESUMO

Aerobic methanotrophic activity is highly dependent on copper availability, and methanotrophs have developed multiple strategies to collect copper. Specifically, when copper is limiting (ambient concentrations less than 1 µM), some methanotrophs produce and secret a small modified peptide (less than 1,300 Da) termed methanobactin (MB) that binds copper with high affinity. As MB is secreted into the environment, other microbes that require copper for their metabolism may be inhibited as MB may make copper unavailable; e.g., inhibition of denitrifiers as complete conversion nitrate to dinitrogen involves multiple enzymes, some of which are copper-dependent. Of key concern is inhibition of the copper-dependent nitrous oxide reductase (NosZ), the only known enzyme capable of converting nitrous oxide (N2O) to dinitrogen. Herein, we show that different forms of MB differentially affect copper uptake and N2O reduction by Pseudomonas stutzeri strain DCP-Ps1 (that expresses clade I NosZ) and Dechloromonas aromatica strain RCB (that expresses clade II NosZ). Specifically, in the presence of MB from Methylocystis sp. strain SB2 (SB2-MB), copper uptake and nosZ expression were more significantly reduced than in the presence of MB from Methylosinus trichosporium OB3b (OB3b-MB). Further, N2O accumulation increased more significantly for both P. stutzeri strain DCP-Ps1 and D. aromatica strain RCB in the presence of SB2-MB versus OB3b-MB. These data illustrate that copper competition between methanotrophs and denitrifying bacteria can be significant and that the extent of such competition is dependent on the form of MB that methanotrophs produce. IMPORTANCE Herein, it was demonstrated that the different forms of methanobactin differentially enhance N2O emissions from Pseudomonas stutzeri strain DCP-Ps1 (harboring clade I nitrous oxide reductase) and Dechloromonas aromatica strain RCB (harboring clade II nitrous oxide reductase). This work contributes to our understanding of how aerobic methanotrophs compete with denitrifiers for the copper uptake and also suggests how MBs prevent copper collection by denitrifiers, thus downregulating expression of nitrous oxide reductase. This study provides critical information for enhanced understanding of microbe-microbe interactions that are important for the development of better predictive models of net greenhouse gas emissions (i.e., methane and nitrous oxide) that are significantly controlled by microbial activity.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Pseudomonas stutzeri , Betaproteobacteria , Cobre/metabolismo , Imidazóis , Methylocystaceae/metabolismo , Óxido Nitroso/metabolismo , Oligopeptídeos , Pseudomonas stutzeri/metabolismo
7.
Appl Environ Microbiol ; 88(1): e0179321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669437

RESUMO

Copper is an important component of methanotrophic physiology, as it controls the expression and activity of alternative forms of methane monooxygenase (MMO). To collect copper, some methanotrophs secrete a chalkophore- or copper-binding compound called methanobactin (MB). MB is a ribosomally synthesized posttranslationally modified polypeptide (RiPP) that, after binding copper, is collected by MbnT, a TonB-dependent transporter (TBDT). Structurally different forms of MB have been characterized, and here, we show that different forms of MB are collected by specific TBDTs. Further, we report that in the model methanotroph, Methylosinus trichosporium OB3b, expression of the TBDT required for uptake of a different MB made by Methylocystis sp. strain SB2 (MB-SB2) is induced in the presence of MB-SB2, suggesting that methanotrophs have developed specific machinery and regulatory systems to actively take up MB from other methanotrophs for copper collection. Moreover, the canonical "copper switch" in M. trichosporium OB3b that controls expression of alternative MMOs is apparent if one of the two TBDTs required for MB-OB3b and MB-SB2 uptake is knocked out, but is disrupted if both TBDTs are knocked out. These data indicate that MB uptake, including the uptake of exogenous MB, plays an important role in the copper switch in M. trichosporium OB3b and, thus, overall activity. Based on these data, we propose a revised model for the copper switch in this methanotroph that involves MB uptake. IMPORTANCE In this study, we demonstrate that different TBDTs in the model methanotroph Methylosinus trichosporium OB3b are responsible for uptake of either endogenous MB or exogenous MB. Interestingly, the presence of exogenous MB induces expression of its specific TBDT in M. trichosporium OB3b, suggesting that this methanotroph is able to actively take up MB produced by others. This work contributes to our understanding of how microbes collect and compete for copper and also helps inform how such uptake coordinates the expression of different forms of methane monooxygenase. Such studies are likely to be very important to develop a better understanding of methanotrophic interactions via synthesis and secretion of secondary metabolites such as methanobactin and thus provide additional means whereby these microbes can be manipulated for a variety of environmental and industrial purposes.


Assuntos
Methylosinus trichosporium , Cobre , Imidazóis , Methylosinus trichosporium/genética , Oligopeptídeos , Oxigenases/genética
8.
Appl Environ Microbiol ; 88(2): e0184121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731053

RESUMO

Methanobactins (MBs) are ribosomally synthesized and posttranslationally modified peptides (RiPPs) produced by methanotrophs for copper uptake. The posttranslational modification that defines MBs is the formation of two heterocyclic groups with associated thioamines from X-Cys dipeptide sequences. Both heterocyclic groups in the MB from Methylosinus trichosporium OB3b (MB-OB3b) are oxazolone groups. The precursor gene for MB-OB3b is mbnA, which is part of a gene cluster that contains both annotated and unannotated genes. One of those unannotated genes, mbnC, is found in all MB operons and, in conjunction with mbnB, is reported to be involved in the formation of both heterocyclic groups in all MBs. To determine the function of mbnC, a deletion mutation was constructed in M. trichosporium OB3b, and the MB produced from the ΔmbnC mutant was purified and structurally characterized by UV-visible absorption spectroscopy, mass spectrometry, and solution nuclear magnetic resonance (NMR) spectroscopy. MB-OB3b from the ΔmbnC mutant was missing the C-terminal Met and was also found to contain a Pro and a Cys in place of the pyrrolidinyl-oxazolone-thioamide group. These results demonstrate MbnC is required for the formation of the C-terminal pyrrolidinyl-oxazolone-thioamide group from the Pro-Cys dipeptide, but not for the formation of the N-terminal 3-methylbutanol-oxazolone-thioamide group from the N-terminal dipeptide Leu-Cys. IMPORTANCE A number of environmental and medical applications have been proposed for MBs, including bioremediation of toxic metals and nanoparticle formation, as well as the treatment of copper- and iron-related diseases. However, before MBs can be modified and optimized for any specific application, the biosynthetic pathway for MB production must be defined. The discovery that mbnC is involved in the formation of the C-terminal oxazolone group with associated thioamide but not for the formation of the N-terminal oxazolone group with associated thioamide in M. trichosporium OB3b suggests the enzymes responsible for posttranslational modification(s) of the two oxazolone groups are not identical.


Assuntos
Methylosinus trichosporium , Cobre/metabolismo , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Oxazolona/metabolismo , Oxigenases/metabolismo
9.
Appl Environ Microbiol ; 87(5): e0230120, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355098

RESUMO

Unique means of copper scavenging have been identified in proteobacterial methanotrophs, particularly the use of methanobactin, a novel ribosomally synthesized, post-translationally modified polypeptide that binds copper with very high affinity. The possibility that copper sequestration strategies of methanotrophs may interfere with copper uptake of denitrifiers in situ and thereby enhance N2O emissions was examined using a suite of laboratory experiments performed with rice paddy microbial consortia. Addition of purified methanobactin from Methylosinus trichosporium OB3b to denitrifying rice paddy soil microbial consortia resulted in substantially increased N2O production, with more pronounced responses observed for soils with lower copper content. The N2O emission-enhancing effect of the soil's native mbnA-expressing Methylocystaceae methanotrophs on the native denitrifiers was then experimentally verified with a Methylocystaceae-dominant chemostat culture prepared from a rice paddy microbial consortium as the inoculum. Finally, with microcosms amended with various cell numbers of methanobactin-producing Methylosinus trichosporium OB3b before CH4 enrichment, microbiomes with different ratios of methanobactin-producing Methylocystaceae to gammaproteobacterial methanotrophs incapable of methanobactin production were simulated. Significant enhancement of N2O production from denitrification was evident in both Methylocystaceae-dominant and Methylococcaceae-dominant enrichments, albeit to a greater extent in the former, signifying the comparative potency of methanobactin-mediated copper sequestration, while implying the presence of alternative copper abstraction mechanisms for Methylococcaceae. These observations support that copper-mediated methanotrophic enhancement of N2O production from denitrification is plausible where methanotrophs and denitrifiers cohabit. IMPORTANCE Proteobacterial methanotrophs-groups of microorganisms that utilize methane as a source of energy and carbon-have been known to employ unique mechanisms to scavenge copper, namely, utilization of methanobactin, a polypeptide that binds copper with high affinity and specificity. Previously the possibility that copper sequestration by methanotrophs may lead to alteration of cuproenzyme-mediated reactions in denitrifiers and consequently increase emission of potent greenhouse gas N2O has been suggested in axenic and coculture experiments. Here, a suite of experiments with rice paddy soil slurry cultures with complex microbial compositions were performed to corroborate that such copper-mediated interplay may actually take place in environments cohabited by diverse methanotrophs and denitrifiers. As spatial and temporal heterogeneity allows for spatial coexistence of methanotrophy (aerobic) and denitrification (anaerobic) in soils, the results from this study suggest that this previously unidentified mechanism of N2O production may account for a significant proportion of N2O efflux from agricultural soils.


Assuntos
Cobre/metabolismo , Imidazóis/metabolismo , Consórcios Microbianos , Óxido Nitroso , Oligopeptídeos/metabolismo , Proteobactérias/metabolismo , Óxido Nitroso/metabolismo , Solo/química , Microbiologia do Solo
10.
Appl Environ Microbiol ; 87(14): e0028621, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33962982

RESUMO

Methanobactins (MBs) are small (<1,300-Da) posttranslationally modified copper-binding peptides and represent the extracellular component of a copper acquisition system in some methanotrophs. Interestingly, MBs can bind a range of metal ions, with some being reduced after binding, e.g., Cu2+ reduced to Cu+. Other metal ions, however, are bound but not reduced, e.g., K+. The source of electrons for selective metal ion reduction has been speculated to be water but never empirically shown. Here, using H218O, we show that when MBs from Methylocystis sp. strain SB2 (MB-SB2) and Methylosinus trichosporium OB3b (MB-OB3) were incubated in the presence of either Au3+, Cu2, or Ag+, 18,18O2 and free protons were released. No 18,18O2 production was observed in the presence of either MB-SB2 or MB-OB3b alone, gold alone, copper alone, or silver alone or when K+ or Mo2+ was incubated with MB-SB2. In contrast to MB-OB3b, MB-SB2 binds Fe3+ with an N2S2 coordination and will also reduce Fe3+ to Fe2+. Iron reduction was also found to be coupled to the oxidation of 2H2O and the generation of O2. MB-SB2 will also couple Hg2+, Ni2+, and Co2+ reduction to the oxidation of 2H2O and the generation of O2, but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions. To determine if the O2 generated during metal ion reduction by MB could be coupled to methane oxidation, 13CH4 oxidation by Methylosinus trichosporium OB3b was monitored under anoxic conditions. The results demonstrate that O2 generation from metal ion reduction by MB-OB3b can support methane oxidation. IMPORTANCE The discovery that MB will couple the oxidation of H2O to metal ion reduction and the release of O2 suggests that methanotrophs expressing MB may be able to maintain their activity under hypoxic/anoxic conditions through the "self-generation" of dioxygen required for the initial oxidation of methane to methanol. Such an ability may be an important factor in enabling methanotrophs to not only colonize the oxic-anoxic interface where methane concentrations are highest but also tolerate significant temporal fluctuations of this interface. Given that genomic surveys often show evidence of aerobic methanotrophs within anoxic zones, the ability to express MB (and thereby generate dioxygen) may be an important parameter in facilitating their ability to remove methane, a potent greenhouse gas, before it enters the atmosphere.


Assuntos
Imidazóis/metabolismo , Metais Pesados/metabolismo , Metano/metabolismo , Methylocystaceae/metabolismo , Oligopeptídeos/metabolismo , Oxigênio/química , Água/química , Metais Pesados/química , Oxirredução
11.
J Biol Chem ; 294(44): 16141-16151, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511324

RESUMO

Methanobactins (Mbns) are ribosomally-produced, post-translationally modified peptidic copper-binding natural products produced under conditions of copper limitation. Genes encoding Mbn biosynthetic and transport proteins have been identified in a wide variety of bacteria, indicating a broader role for Mbns in bacterial metal homeostasis. Many of the genes in the Mbn operons have been assigned functions, but two genes usually present, mbnP and mbnH, encode uncharacterized proteins predicted to reside in the periplasm. MbnH belongs to the bacterial diheme cytochrome c peroxidase (bCcP)/MauG protein family, and MbnP contains no domains of known function. Here, we performed a detailed bioinformatic analysis of both proteins and have biochemically characterized MbnH from Methylosinus (Ms.) trichosporium OB3b. We note that the mbnH and mbnP genes typically co-occur and are located proximal to genes associated with microbial copper homeostasis. Our bioinformatics analysis also revealed that the bCcP/MauG family is significantly more diverse than originally appreciated, and that MbnH is most closely related to the MauG subfamily. A 2.6 Å resolution structure of Ms. trichosporium OB3b MbnH combined with spectroscopic data and peroxidase activity assays provided evidence that MbnH indeed more closely resembles MauG than bCcPs, although its redox properties are significantly different from those of MauG. The overall similarity of MbnH to MauG suggests that MbnH could post-translationally modify a macromolecule, such as internalized CuMbn or its uncharacterized partner protein, MbnP. Our results indicate that MbnH is a MauG-like diheme protein that is likely involved in microbial copper homeostasis and represents a new family within the bCcP/MauG superfamily.


Assuntos
Cobre/metabolismo , Imidazóis/metabolismo , Methylosinus trichosporium/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Sequência de Aminoácidos/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Homeostase , Oligopeptídeos/biossíntese , Óperon/genética , Processamento de Proteína Pós-Traducional
12.
J Biol Chem ; 293(13): 4606-4615, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29348173

RESUMO

Methanobactins (Mbns) are ribosomally produced, post-translationally modified natural products that bind copper with high affinity and specificity. Originally identified in methanotrophic bacteria, which have a high need for copper, operons encoding these compounds have also been found in many non-methanotrophic bacteria. The proteins responsible for Mbn biosynthesis include several novel enzymes. Mbn transport involves export through a multidrug efflux pump and re-internalization via a TonB-dependent transporter. Release of copper from Mbn and the molecular basis for copper regulation of Mbn production remain to be elucidated. Future work is likely to result in the identification of new enzymatic chemistry, opportunities for bioengineering and drug targeting of copper metabolism, and an expanded understanding of microbial metal homeostasis.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Homeostase/fisiologia , Proteínas de Membrana/metabolismo , Oligopeptídeos/biossíntese , Transporte Biológico Ativo/fisiologia , Imidazóis
13.
Proc Natl Acad Sci U S A ; 113(46): 13027-13032, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807137

RESUMO

Methanotrophic bacteria use methane, a potent greenhouse gas, as their primary source of carbon and energy. The first step in methane metabolism is its oxidation to methanol. In almost all methanotrophs, this chemically challenging reaction is catalyzed by particulate methane monooxygenase (pMMO), a copper-dependent integral membrane enzyme. Methanotrophs acquire copper (Cu) for pMMO by secreting a small ribosomally produced, posttranslationally modified natural product called methanobactin (Mbn). Mbn chelates Cu with high affinity, and the Cu-loaded form (CuMbn) is reinternalized into the cell via an active transport process. Bioinformatic and gene regulation studies suggest that two proteins might play a role in CuMbn handling: the TonB-dependent transporter MbnT and the periplasmic binding protein MbnE. Disruption of the gene that encodes MbnT abolishes CuMbn uptake, as reported previously, and expression of MbnT in Escherichia coli confers the ability to take up CuMbn. Biophysical studies of MbnT and MbnE reveal specific interactions with CuMbn, and a crystal structure of apo MbnE is consistent with MbnE's proposed role as a periplasmic CuMbn transporter. Notably, MbnT and MbnE exhibit different levels of discrimination between cognate and noncognate CuMbns. These findings provide evidence for CuMbn-protein interactions and begin to elucidate the molecular mechanisms of its recognition and transport.


Assuntos
Cobre/metabolismo , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Produtos Biológicos/metabolismo , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Oligopeptídeos/genética , Oxigenases/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo
14.
Molecules ; 24(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703299

RESUMO

Particulate methane monooxygenase (pMMO) is a characteristic membrane-bound metalloenzyme of methane-oxidizing bacteria that can catalyze the bioconversion of methane to methanol. However, in order to achieve pMMO-based continuous methane-to-methanol bioconversion, the problems of reducing power in vitro regeneration and pMMO stability need to be overcome. Methanobactin (Mb) is a small copper-chelating molecule that functions not only as electron carrier for pMMO catalysis and pMMO protector against oxygen radicals, but also as an agent for copper acquisition and uptake. In order to improve the activity and stability of pMMO, methanobactin-Cu (Mb-Cu)-modified gold nanoparticle (AuNP)-pMMO nanobiohybrids were straightforwardly synthesized via in situ reduction of HAuCl4 to AuNPs in a membrane fraction before further association with Mb-Cu. Mb-Cu modification can greatly improve the activity and stability of pMMO in the AuNP-pMMO nanobiohybrids. It is shown that the Mb-Cu-modified AuNP-pMMO nanobiohybrids can persistently catalyze the conversion of methane to methanol with hydroquinone as electron donor. The artificial heterogeneous nanobiohybrids exhibited excellent reusability and reproducibility in three cycles of catalysis, and they provide a model for achieving hydroquinone-driven conversion of methane to methanol.


Assuntos
Proteínas de Bactérias/química , Enzimas Imobilizadas/química , Ouro/química , Imidazóis/química , Nanopartículas Metálicas/química , Methylosinus trichosporium/enzimologia , Oligopeptídeos/química , Oxigenases/química , Estabilidade Enzimática
15.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305514

RESUMO

Aerobic methanotrophs have long been known to play a critical role in the global carbon cycle, being capable of converting methane to biomass and carbon dioxide. Interestingly, these microbes exhibit great sensitivity to copper and rare-earth elements, with the expression of key genes involved in the central pathway of methane oxidation controlled by the availability of these metals. That is, these microbes have a "copper switch" that controls the expression of alternative methane monooxygenases and a "rare-earth element switch" that controls the expression of alternative methanol dehydrogenases. Further, it has been recently shown that some methanotrophs can detoxify inorganic mercury and demethylate methylmercury; this finding is remarkable, as the canonical organomercurial lyase does not exist in these methanotrophs, indicating that a novel mechanism is involved in methylmercury demethylation. Here, we review recent findings on methanotrophic interactions with metals, with a particular focus on these metal switches and the mechanisms used by methanotrophs to bind and sequester metals.


Assuntos
Bactérias Anaeróbias/metabolismo , Metais/metabolismo , Metano/metabolismo
16.
Curr Gastroenterol Rep ; 20(12): 56, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397835

RESUMO

PURPOSE OF REVIEW: Exciting developments relating to Wilson disease (WD) have taken place with respect to both basic biological and clinical research. This review critically examines some of these findings and considers their implications for current thinking about WD. It is not a comprehensive review of WD as a clinical disorder. RECENT FINDINGS: The structure of the gene product of ATP7B, abnormal in WD, is being worked out in detail, along with a broader description of how the protein ATP7B (Wilson ATPase) functions in cells including enterocytes, not only in relation to copper disposition but also to lipid synthesis. Recent population studies raise the possibility that WD displays incomplete penetrance. Innovative screening techniques may increase ascertainment. New strategies for diagnosing and treating WD are being developed. Several disorders have been identified which might qualify as WD-mimics. WD can be difficult to diagnose and treat. Insights from its pathobiology are providing new options for managing WD.


Assuntos
Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/terapia , Cobre/metabolismo , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Humanos
17.
Appl Environ Microbiol ; 83(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795312

RESUMO

Gene expression in methanotrophs has been shown to be affected by the availability of a variety of metals, most notably copper-regulating expression of alternative forms of methane monooxygenase. A copper-binding compound, or chalkophore, called methanobactin plays a key role in copper uptake in methanotrophs. Methanobactin is a ribosomally synthesized and posttranslationally modified peptide (RiPP) with two heterocyclic rings with an associated thioamide for each ring, formed from X-Cys dipeptide sequences that bind copper. The gene coding for the precursor polypeptide of methanobactin, mbnA, is part of a gene cluster, but the role of other genes in methanobactin biosynthesis is unclear. To begin to elucidate the function of these genes, we constructed an unmarked deletion of mbnABCMN in Methylosinus trichosporium OB3b and then homologously expressed mbnABCM using a broad-host-range cloning vector to determine the function of mbnN, annotated as coding for an aminotransferase. Methanobactin produced by this strain was found to be substantially different from wild-type methanobactin in that the C-terminal methionine was missing and only one of the two oxazolone rings was formed. Rather, in place of the N-terminal 3-methylbutanoyl-oxazolone-thioamide group, a leucine and a thioamide-containing glycine (Gly-Ψ) were found, indicating that MbnN is used for deamination of the N-terminal leucine of methanobactin and that this posttranslational modification is critical for closure of the N-terminal oxazolone ring in M. trichosporium OB3b. These studies provide new insights into methanobactin biosynthesis and also provide a platform for understanding the function of other genes in the methanobactin gene cluster. IMPORTANCE: Methanotrophs, microbes that play a critical role in the carbon cycle, are influenced by copper, with gene expression and enzyme activity changing as copper levels change. Methanotrophs produce a copper-binding compound, or chalkophore, called methanobactin for copper uptake, and methanobactin plays a key role in controlling methanotrophic activity. Methanobactin has also been shown to be effective in the treatment of Wilson disease, an autosomal recessive disorder where the human body cannot correctly assimilate copper. It is important to characterize the methanobactin biosynthesis pathway to understand how methanotrophs respond to their environment as well as to optimize the use of methanobactin for the treatment of copper-related diseases such as Wilson disease. Here we show that mbnN, encoding an aminotransferase, is involved in the deamination of the N-terminal leucine and necessary for the formation of one but not both of the heterocyclic rings in methanobactin that are responsible for copper binding.


Assuntos
Imidazóis/química , Leucina/química , Methylosinus trichosporium/enzimologia , Oligopeptídeos/química , Oligopeptídeos/genética , Oxazolona/química , Transaminases/metabolismo , Cobre/metabolismo , Desaminação , Deleção de Genes , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Glicina/química , Glicina/metabolismo , Imidazóis/metabolismo , Leucina/metabolismo , Metionina/deficiência , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Família Multigênica , Oligopeptídeos/biossíntese , Oligopeptídeos/metabolismo , Oxazolona/metabolismo , Processamento de Proteína Pós-Traducional , Tioamidas/química , Tioamidas/metabolismo , Transaminases/genética
18.
ACS Synth Biol ; 13(8): 2347-2356, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39109930

RESUMO

Aerobic methanotrophs, or methane-consuming microbes, are strongly dependent on copper for their activity. To satisfy this requirement, some methanotrophs produce a copper-binding compound, or chalkophore, called methanobactin (MB). In addition to playing a critical role in methanotrophy, MB has also been shown to have great promise in treating copper-related human diseases, perhaps most significantly Wilson's disease. In this congenital disorder, copper builds up in the liver, leading to irreversible damage and, in severe cases, complete organ failure. Remarkably, MB has been shown to reverse such damage in animal models, and there is a great deal of interest in upscaling MB production for expanded clinical trials. Such efforts, however, are currently hampered as (1) the natural rate of MB production rate by methanotrophs is low, (2) the use of methane as a substrate for MB production is problematic as it is explosive in air, (3) there is limited understanding of the entire pathway of MB biosynthesis, and (4) the most attractive form of MB is produced by Methylocystis sp. strain SB2, a methanotroph that is genetically intractable. Herein, we report heterologous biosynthesis of MB from Methylocystis sp. strain SB2 in an alternative methanotroph, Methylosinus trichosporium OB3b, not only on methane but also on methanol. As a result, the strategy described herein not only facilitates enhanced MB production but also provides opportunities to construct various mutants to delineate the entire pathway of MB biosynthesis, as well as the creation of modified forms of MB that may have enhanced therapeutic value.


Assuntos
Imidazóis , Methylocystaceae , Methylosinus trichosporium , Oligopeptídeos , Methylosinus trichosporium/metabolismo , Methylosinus trichosporium/genética , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Methylocystaceae/metabolismo , Methylocystaceae/genética , Metano/metabolismo , Engenharia Metabólica/métodos
19.
Bioresour Technol ; 399: 130599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493938

RESUMO

This study established a Candida rugosa lipase (CRL) system to catalyze triolein and ethyl ferulate interesterification. The products were identified, and the binding mode between the substrates and CRL was predicted through molecular docking. Three methods for preparing CRL-AuNPs were proposed and characterized. It was found that the addition of 40 mL of 15 nm gold nanoparticles increased the CRL activity from 3.05 U/mg to 4.75 U/mg, but the hybridization efficiency was only 32.7 %. By using 4 mL of 0.1 mg/mL chloroauric acid, the hybridization efficiency was improved to 50.7 %, but the enzyme activity was sharply decreased. However, when the molar ratio of Mb to HAuCl4 was 0.2, the hybridization efficiency increased to 71.8 %, and the CRL activity was also enhanced to 5.98 U/mg. Under optimal conditions, the enzyme activity of CRL-AuNPs③ was maintained at 95 % after 6 repetitions and 85.6 % after 30 days at room temperature.


Assuntos
Ácidos Cafeicos , Lipase , Nanopartículas Metálicas , Saccharomycetales , Lipase/metabolismo , Ouro , Enzimas Imobilizadas/metabolismo , Trioleína , Simulação de Acoplamento Molecular , Candida/metabolismo , Estabilidade Enzimática
20.
Metabolism ; 158: 155973, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986805

RESUMO

In Wilson disease (WD), liver copper (Cu) excess, caused by mutations in the ATPase Cu transporting beta (ATP7B), has been extensively studied. In contrast, in the gastrointestinal tract, responsible for dietary Cu uptake, ATP7B malfunction is poorly explored. We therefore investigated gut biopsies from WD patients and compared intestines from two rodent WD models and from human ATP7B knock-out intestinal cells to their respective wild-type controls. We observed gastrointestinal (GI) inflammation in patients, rats and mice lacking ATP7B. Mitochondrial alterations and increased intestinal leakage were observed in WD rats, Atp7b-/- mice and human ATP7B KO Caco-2 cells. Proteome analyses of intestinal WD homogenates revealed profound alterations of energy and lipid metabolism. The intestinal damage in WD animals and human ATP7B KO cells did not correlate with absolute Cu elevations, but likely reflects intracellular Cu mislocalization. Importantly, Cu depletion by the high-affinity Cu chelator methanobactin (MB) restored enterocyte mitochondria, epithelial integrity, and resolved gut inflammation in WD rats and human WD enterocytes, plausibly via autophagy-related mechanisms. Thus, we report here before largely unrecognized intestinal damage in WD, occurring early on and comprising metabolic and structural tissue damage, mitochondrial dysfunction, and compromised intestinal barrier integrity and inflammation, that can be resolved by high-affinity Cu chelation treatment.


Assuntos
ATPases Transportadoras de Cobre , Cobre , Degeneração Hepatolenticular , Mucosa Intestinal , Camundongos Knockout , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/patologia , Degeneração Hepatolenticular/tratamento farmacológico , Animais , Humanos , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Ratos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Células CACO-2 , Feminino , Adulto , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Intestinos/patologia , Intestinos/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa