Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
1.
Mol Microbiol ; 119(3): 350-363, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36660820

RESUMO

Methanogenic archaea belonging to the Order Methanosarcinales conserve energy using an electron transport chain (ETC). In the genetically tractable strain Methanosarcina acetivorans, ferredoxin donates electrons to the ETC via the Rnf (Rhodobacter nitrogen fixation) complex. The Rnf complex in M. acetivorans, unlike its counterpart in Bacteria, contains a multiheme c-type cytochrome (MHC) subunit called MmcA. Early studies hypothesized MmcA is a critical component of Rnf, however recent work posits that the primary role of MmcA is facilitating extracellular electron transport. To explore the physiological role of MmcA, we characterized M. acetivorans mutants lacking either the entire Rnf complex (∆mmcA-rnf) or just the MmcA subunit (∆mmcA). Our data show that MmcA is essential for growth during acetoclastic methanogenesis but neither Rnf nor MmcA is required for methanogenic growth on methylated compounds. On methylated compounds, the absence of MmcA alone leads to a more severe growth defect compared to a Rnf deletion likely due to different strategies for ferredoxin oxidation that arise in each strain. Transcriptomic data suggest that the ∆mmcA mutant might oxidize ferredoxin by upregulating the cytosolic Wood-Ljundahl pathway for acetyl-CoA synthesis, whereas the ∆mmcA-rnf mutant may repurpose the F420 dehydrogenase complex (Fpo) to oxidize ferredoxin coupled to proton translocation. Beyond energy conservation, the deletion of rnf or mmcA leads to global transcriptional changes of genes involved in methanogenesis, carbon assimilation and regulation. Overall, our study provides systems-level insights into the non-overlapping roles of the Rnf bioenergetic complex and the associated MHC, MmcA.


Assuntos
Carbono , Methanosarcina , Methanosarcina/genética , Carbono/metabolismo , Ferredoxinas/metabolismo , Oxirredução , Citocromos/metabolismo , Metano/metabolismo
2.
Appl Environ Microbiol ; 90(6): e0069124, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809047

RESUMO

Methanogenic archaea play a key role in the global carbon cycle because these microorganisms remineralize organic compounds in various anaerobic environments. The microorganism Methanosarcina barkeri is a metabolically versatile methanogen, which can utilize acetate, methanol, and H2/CO2 to synthesize methane. However, the regulatory mechanisms underlying methanogenesis for different substrates remain unknown. In this study, RNA-seq analysis was used to investigate M. barkeri growth and gene transcription under different substrate regimes. According to the results, M. barkeri showed the best growth under methanol, followed by H2/CO2 and acetate, and these findings corresponded well with the observed variations in genes transcription abundance for different substrates. In addition, we identified a novel regulator, MSBRM_RS03855 (designated as HdrR), which specifically activates the transcription of the heterodisulfide reductase hdrBCA operon in M. barkeri. HdrR was able to bind to the hdrBCA operon promoter to regulate transcription. Furthermore, the structural model analyses revealed a helix-turn-helix domain, which is likely involved in DNA binding. Taken together, HdrR serves as a model to reveal how certain regulatory factors control the expression of key enzymes in the methanogenic pathway.IMPORTANCEThe microorganism Methanosarcina barkeri has a pivotal role in the global carbon cycle and contributes to global temperature homeostasis. The consequences of biological methanogenesis are far-reaching, including impacts on atmospheric methane and CO2 concentrations, agriculture, energy production, waste treatment, and human health. As such, reducing methane emissions is crucial to meeting set climate goals. The methanogenic activity of certain microorganisms can be drastically reduced by inhibiting the transcription of the hdrBCA operon, which encodes heterodisulfide reductases. Here, we provide novel insight into the mechanisms regulating hdrBCA operon transcription in the model methanogen M. barkeri. The results clarified that HdrR serves as a regulator of heterodisulfide reductase hdrBCA operon transcription during methanogenesis, which expands our understanding of the unique regulatory mechanisms that govern methanogenesis. The findings presented in this study can further our understanding of how genetic regulation can effectively reduce the methane emissions caused by methanogens.


Assuntos
Proteínas Arqueais , Methanosarcina barkeri , Óperon , Oxirredutases , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Transcrição Gênica , Metano/metabolismo , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Acetatos/metabolismo , Hidrogênio/metabolismo
3.
Appl Environ Microbiol ; : e0051624, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023267

RESUMO

Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.IMPORTANCEProteins that catalyze biochemical reactions often require transition metals that can have a high affinity for sulfur, another required element for life. Thus, the availability of metals and sulfur are intertwined and can have large impacts on an organismismal biochemistry. Methanogens often occupy anoxic, sulfide-rich (euxinic) environments that favor the precipitation of transition metals as metal sulfides, thereby creating presumed metal limitation. Recently, several methanogens have been shown to acquire iron and sulfur from pyrite, an abundant iron-sulfide mineral that was traditionally considered to be unavailable to biology. The work presented here provides new insights into the distribution of metalloproteins, and metal uptake of Methanosarcina barkeri Fusaro grown under euxinic or pyritic growth conditions. Thorough characterizations of this methanogen under different metal and sulfur conditions increase our understanding of the influence of metal availability on methanogens, and presumably other anaerobes, that inhabit euxinic environments.

4.
Environ Res ; 250: 118390, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331139

RESUMO

Wetlands are the largest natural sources of methane (CH4) emissions worldwide. Littoral wetlands of urban lakes represent an ecotone between aquatic and terrestrial ecosystems and are strongly influenced by water levels, environmental conditions, and anthropogenic activities. Despite these littoral zones being potential "hotspots" of CH4 emissions, the status of CH4 emissions therein and the role of physicochemical properties and microbial communities regulating these emissions remain unclear. This study compared the CH4 fluxes, physicochemical properties, and CH4-cycling microbial communities (methanogens and methanotrophs) of three zones (a non-flooded supralittoral zone, a semi-flooded eulittoral zone, and a flooded infralittoral zone) in the littoral wetlands of Lake Pipa, Jiangsu Province, China, for two seasons (summer and winter). The eulittoral zone was a CH4 source (median: 11.49 and 0.02 mg m-2 h-1 in summer and winter, respectively), whereas the supralittoral zone acted as a CH4 sink (median: -0.78 and -0.09 mg m-2 h-1 in summer and winter, respectively). The infralittoral zone shifted from CH4 sink to source between the summer (median: -10.65 mg m-2 h-1) and winter (median: 0.11 mg m-2 h-1). The analysis of the functional genes of methanogenesis (mcrA) and methanotrophy (pmoA) and path analysis showed that CH4 fluxes were strongly regulated by biotic factors (abundance of the mcrA gene and alpha diversity of CH4-cycling microbial communities) and abiotic factors (ammonia nitrogen, moisture, and soil organic carbon). In particular, biotic factors had a major influence on the variation in the CH4 flux, whereas abiotic factors had a minor influence. Our findings provide novel insights into the spatial and seasonal variations in CH4-cycling microbial communities and identify the key factors influencing CH4 fluxes in littoral wetlands. These results are important for managing nutrient inputs and regulating the hydrological regimes of urban lakes.


Assuntos
Inundações , Lagos , Metano , Microbiota , Estações do Ano , Áreas Alagadas , Metano/análise , Metano/metabolismo , Lagos/microbiologia , Lagos/química , China , Poluentes Atmosféricos/análise , Monitoramento Ambiental
5.
Environ Res ; 241: 117607, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939810

RESUMO

Anaerobic ethanol oxidation relies on syntrophic interactions among functional microorganisms to become thermodynamically feasible. Different operational modes (sequencing batch reactors, SBRs, and continuous flow reactors, CFRs) and solids retention times (SRT, 25 days and 10 days) were employed in four ethanol-fed reactors, named as SBR25d, SBR10d, CFR25d, and CFR10d, respectively. System performance, syntrophic relationships, microbial communities, and metabolic pathways were examined. During the long-term operation, 2002.7 ± 56.0 mg COD/L acetate was accumulated in CFR10d due to the washout of acetotrophic methanogens. Microorganisms with high half-saturation constants were enriched in reactors of 25-day SRT. Moreover, ethanol oxidizing bacteria and acetotrophic methanogens with high half-saturation constants could be acclimated in SBRs. In SBRs, Syner-01 and Methanothrix dominated, and the low SRT of 10 days increased the relative abundance of Geobacter to 38.0%. In CFRs, the low SRT of 10 days resulted in an increase of Desulfovibrio among syntrophic bacteria, and CFR10d could be employed in enriching hydrogenotrophic methanogens like Methanobrevibacter.


Assuntos
Acetatos , Bactérias , Bactérias/metabolismo , Anaerobiose , Acetatos/metabolismo , Etanol , Reatores Biológicos , Metano
6.
Environ Res ; 252(Pt 3): 118911, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604482

RESUMO

Mechanistic understanding of acetoclastic methanogenesis is pivotal for optimizing anaerobic digestion for efficient methane production. In this study, two different operational modes, continuous flow reactor (CFR) and sequencing batch reactor (SBR), accompanied with solids retention times (SRT) of 10 days (SBR10d and CFR10d) and 25 days (SBR25d and CFR25d) were implemented to elucidate their impacts on microbial communities and energy metabolism of methanogens in acetate-fed systems. Microbial community analysis revealed that the relative abundance of Methanosarcina (16.0%-46.0%) surpassed Methanothrix (3.7%-22.9%) in each reactor. SBRs had the potential to enrich both Methanothrix and Methanosarcina. Compared to SBRs, CFRs had lower total relative abundance of methanogens. Methanosarcina exhibited a superior enrichment in reactors with 10-day SRT, while Methanothrix preferred to be acclimated in reactors with 25-day SRT. The operational mode and SRT were also observed to affect the distribution of acetate-utilizing bacteria, including Pseudomonas, Desulfocurvus, Mesotoga, and Thauera. Regarding enzymes involved in energy metabolism, Ech and Vho/Vht demonstrated higher relative abundances at 10-day SRT compared to 25-day SRT, whereas Fpo and MtrA-H showed higher relative abundances in SBRs than those in CFRs. The relative abundance of genes encoding ATPase harbored by Methanothrix was higher than Methanosarcina at 25-day SRT. Additionally, the relative abundance of V/A-type ATPase (typically for methanogens) was observed higher in SBRs compared to CFRs, while the F-type ATPase (typically for bacteria) exhibited higher relative abundance in CFRs than that in SBRs.


Assuntos
Reatores Biológicos , Metabolismo Energético , Metano , Reatores Biológicos/microbiologia , Metano/metabolismo , Acetatos/metabolismo , Methanosarcina/metabolismo , Methanosarcina/genética , Anaerobiose , Aclimatação
7.
Environ Res ; 256: 119230, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810832

RESUMO

The conversion of carbon dioxide (CO2) to methane (CH4) is a strategy for sequestering CO2. Zero-valent iron (ZVI) has been proposed as an alternative electron donor for the CO2 reduction to CH4. In this study, the effects of ZVI concentrations on the abiotic production of H2 (without the action of microorganisms) in the first part and on the biological conversion of CO2 to CH4 using ZVI as a direct electron donor in the second part were examined. In the abiotic H2 production, the increase in the ZVI concentration from 16 to 32, 64, and 96 g/L was found to have positive effects on both the amounts of H2 generated and the rates of H2 production because the extent of ZVI oxidation positively correlates with increasing surface area. Nevertheless, the increase in ZVI concentration from 96 to 224 g/L did not benefit the H2 production because the ZVI dissolution was suppressed by the increasing aqueous pH above 10. In the bioconversion of CO2 to CH4 using ZVI as an electron donor, the main methanogenesis pathway occurred via hydrogenotrophic methanogenesis at pH 8.7-9.5 driven by the genus Methanobacterium of the class Methanobacteria. At ZVI concentrations of 64 g/L and above, the production of volatile fatty acid (VFA) became clear. Acetate was the main VFA, indicating the induction of homoacetogenesis at ZVI concentrations of 64 g/L and above. In addition, the presence of propionate as the second major VFA suggests the production of propionate from CO2 and acetate under conditions with high H2 partial pressure. The results indicated that the pathway for ZVI/CO2 conversion to CH4 was competitive between hydrogenotrophic methanogenesis and homoacetogenesis.


Assuntos
Dióxido de Carbono , Hidrogênio , Ferro , Metano , Metano/metabolismo , Dióxido de Carbono/metabolismo , Anaerobiose , Ferro/metabolismo , Hidrogênio/metabolismo
8.
Anaerobe ; 85: 102820, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309618

RESUMO

OBJECTIVES: Methanogenic archaea are a minor component of human oral microbiota. Due to their relatively low abundance, the detection of these neglected microorganisms is challenging. This study concerns the presence of methanogens in salivary samples collected from Tunisian adults to evaluate their prevalence and burden using a polyphasic molecular approach. METHODS: A total of 43 saliva samples were included. Metagenomic and standard 16S rRNA sequencing were performed as an initial screening to detect the presence of methanogens in the oral microbiota of Tunisian adults. Further investigations were performed using specific quantitative real-time PCR targeting Methanobrevibacter oralis and Methanobrevibacter smithii. RESULTS: Methanobrevibacter was detected in 5/43 (11.62 %) saliva samples after metagenomic 16S rRNA data analysis. The presence of M. oralis was confirmed in 6/43 samples by standard 16S rRNA sequencing. Using real-time PCR, methanogens were detected in 35/43 (81.39 %) samples, including 62.79 % positive for M. oralis and 76.74 % positive for M. smithii. These findings reflect the high prevalence of both methanogens, revealed by the high sensitivity of the real-time PCR approach. Interestingly, we also noted a significant statistical association between the detection of M. smithii and poor adherence to a Mediterranean diet, indicating the impact of diet on M. smithii prevalence. CONCLUSION: Our study showed the presence of methanogens in the oral microbiota of Tunisian adults with an unprecedented relatively high prevalence. Choice of methodology is also central to picturing the real prevalence and diversity of such minor taxa in the oral microbiota.


Assuntos
Microbiota , Saliva , Adulto , Humanos , RNA Ribossômico 16S/genética , Methanobrevibacter/genética , Archaea/genética
9.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203843

RESUMO

The inflammatory bowel disease (IBD) is associated with gut microbiota dysbiosis; however, studies on methanogens-especially those focused on children-are extremely limited. The aim of this study was to determine the abundance of total methanogenic archaea and their three subgroups: Methanobrevibacter (Mb.) smithii, Methanosphaera (Ms.) stadtmanae, and Methanomassiliicoccales, in the feces of children with both active and inactive Crohn's disease (CD) and ulcerative colitis (UC). The results of a quantitative real-time PCR were cross-referenced with the disease type (CD vs. UC) and activity assessed with the use of Pediatric Crohn's Disease Activity Index (PCDAI) and Pediatric Ulcerative Colitis Activity Index (PUCAI) indices, and fecal calprotectin (FCP) concentration, and compared with controls. There was a significant decrease in the number of total methanogens in CD and UC compared to controls. The prevalence of total methanogens was also lower in UC compared to controls. Furthermore, patients from the inactive UC group were colonized by a lower number of Mb. smithii, and demonstrated the most pronounced positive correlation between the number of Ms. stadtmanae and the FCP concentration. Our results demonstrate that gut methanogens are related to the type and activity of pediatric IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Euryarchaeota , Doenças Inflamatórias Intestinais , Humanos , Criança , Archaea/genética , Complexo Antígeno L1 Leucocitário
10.
J Environ Manage ; 355: 120481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447515

RESUMO

Significant amounts of the greenhouse gas methane (CH4) are released into the atmosphere worldwide via freshwater sources. The surface methane maximum (SMM), where methane is supersaturated in surface water, has been observed in aquatic systems and contributes significantly to emissions. However, little is known about the temporal and spatial variability of SMM or the mechanisms underlying its development in artificial reservoirs. Here, the community composition of methanogens as major methane producers in the water column and the mcrA gene was investigated, and the cause of surface methane supersaturation was analyzed. In accordance with the findings, elevated methane concentration of SMM in the transition zone, with an annually methane emission flux 2.47 times higher than the reservoir average on a large and deep reservoir. In the transition zone, methanogens with mcrA gene abundances ranging from 0.5 × 103-1.45 × 104 copies/L were found. Methanobacterium, Methanoseata and Methanosarcina were the three dominate methanogens, using both acetic acid and H2/CO2 pathways. In summary, this study contributes to our comprehension of CH4 fluxes and their role in the atmospheric methane budget. Moreover, it offers biological proof of methane generation, which could aid in understanding the role of microbial methanogenesis in aerobic water.


Assuntos
Gases de Efeito Estufa , Água , Metano/análise , Água Doce , Atmosfera
11.
Trends Biochem Sci ; 44(9): 807-818, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31104860

RESUMO

Submarine hydrothermal vents are rich in hydrogen (H2), an ancient source of electrons and chemical energy for life. Geochemical H2 stems from serpentinization, a process in which rock-bound iron reduces water to H2. Reactions involving H2 and carbon dioxide (CO2) in hydrothermal systems generate abiotic methane and formate; these reactions resemble the core energy metabolism of methanogens and acetogens. These organisms are strict anaerobic autotrophs that inhabit hydrothermal vents and harness energy via H2-dependent CO2 reduction. Serpentinization also generates native metals, which can reduce CO2 to formate and acetate in the laboratory. The enzymes that channel H2, CO2, and dinitrogen (N2) into methanogen and acetogen metabolism are the backbone of the most ancient metabolic pathways. Their active sites share carbon-metal bonds which, although rare in biology, are conserved relics of primordial biochemistry present at the origin of life.


Assuntos
Carbono/metabolismo , Metais/metabolismo , Carbono/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Metais/química
12.
Appl Environ Microbiol ; 89(9): e0103323, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695043

RESUMO

All nitrogen-fixing bacteria and archaea (diazotrophs) use molybdenum (Mo) nitrogenase to reduce dinitrogen (N2) to ammonia, with some also containing vanadium (V) and iron-only (Fe) nitrogenases that lack Mo. Among diazotrophs, the regulation and usage of the alternative V-nitrogenase and Fe-nitrogenase in methanogens are largely unknown. Methanosarcina acetivorans contains nif, vnf, and anf gene clusters encoding putative Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase, respectively. This study investigated nitrogenase expression and growth by M. acetivorans in response to fixed nitrogen, Mo/V availability, and CRISPRi repression of the nif, vnf, and/or anf gene clusters. The availability of Mo and V significantly affected growth of M. acetivorans with N2 but not with NH4Cl. M. acetivorans exhibited the fastest growth rate and highest cell yield during growth with N2 in medium containing Mo, and the slowest growth in medium lacking Mo and V. qPCR analysis revealed the transcription of the nif operon is only moderately affected by depletion of fixed nitrogen and Mo, whereas vnf and anf transcription increased significantly when fixed nitrogen and Mo were depleted, with removal of Mo being key. Immunoblot analysis revealed Mo-nitrogenase is detected when fixed nitrogen is depleted regardless of Mo availability, while V-nitrogenase and Fe-nitrogenase are detected only in the absence of fixed nitrogen and Mo. CRISPRi repression studies revealed that V-nitrogenase and/or Fe-nitrogenase are required for Mo-independent diazotrophy, and unexpectedly that the expression of Mo-nitrogenase is also required. These results reveal that alternative nitrogenase production in M. acetivorans is tightly controlled and dependent on Mo-nitrogenase expression. IMPORTANCE Methanogens and closely related methanotrophs are the only archaea known or predicted to possess nitrogenase. Methanogens play critical roles in both the global biological nitrogen and carbon cycles. Moreover, methanogens are an ancient microbial lineage and nitrogenase likely originated in methanogens. An understanding of the usage and properties of nitrogenases in methanogens can provide new insight into the evolution of nitrogen fixation and aid in the development nitrogenase-based biotechnology. This study provides the first evidence that a methanogen can produce all three forms of nitrogenases, including simultaneously. The results reveal components of Mo-nitrogenase regulate or are needed to produce V-nitrogenase and Fe-nitrogenase in methanogens, a result not seen in bacteria. Overall, this study provides a foundation to understand the assembly, regulation, and activity of the alternative nitrogenases in methanogens.


Assuntos
Molibdênio , Nitrogenase , Nitrogenase/genética , Nitrogenase/metabolismo , Molibdênio/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Archaea/metabolismo
13.
Mol Ecol ; 32(12): 3257-3275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896778

RESUMO

Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.


Assuntos
Microbiota , Solo , Solo/química , Metano/metabolismo , Florestas , Genes Bacterianos , Microbiota/genética , Microbiologia do Solo
14.
Annu Rev Microbiol ; 72: 331-353, 2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-29924687

RESUMO

A decade ago, a novel mechanism to drive thermodynamically unfavorable redox reactions was discovered that is used in prokaryotes to drive endergonic electron transfer reactions by a direct coupling to an exergonic redox reaction in one soluble enzyme complex. This process is referred to as flavin-based electron bifurcation, or FBEB. An important function of FBEB is that it allows the generation of reduced low-potential ferredoxin (Fdred) from comparably high-potential electron donors such as NADH or molecular hydrogen (H2). Fdred is then the electron donor for anaerobic respiratory chains leading to the synthesis of ATP. In many metabolic scenarios, Fd is reduced by metabolic oxidoreductases and Fdred then drives endergonic metabolic reactions such as H2 production by the reverse, electron confurcation. FBEB is energetically more economical than ATP hydrolysis or reverse electron transport as a driving force for endergonic redox reactions; thus, it does "save" cellular ATP. It is essential for autotrophic growth at the origin of life and also allows for heterotrophic growth on certain low-energy substrates.


Assuntos
Bactérias/metabolismo , Transporte de Elétrons , Metabolismo Energético , Ferredoxinas/metabolismo , Hidrogênio/metabolismo , NAD/metabolismo , Trifosfato de Adenosina/biossíntese , Anaerobiose
15.
Biotechnol Bioeng ; 120(7): 1844-1856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148477

RESUMO

Hydrogen (H2 ) concentrations that were associated with microbiological respiratory processes (RPs) such as sulfate reduction and methanogenesis were quantified in continuous-flow systems (CFSs) (e.g., bioreactors, sediments). Gibbs free energy yield (ΔÇ´ ~ 0) of the relevant RP has been proposed to control the observed H2 concentrations, but most of the reported values do not align with the proposed energetic trends. Alternatively, we postulate that system characteristics of each experimental design influence all system components including H2 concentrations. To analyze this proposal, a Monod-based mathematical model was developed and used to design a gas-liquid bioreactor for hydrogenotrophic methanogenesis with Methanobacterium bryantii M.o.H. Gas-to-liquid H2 mass transfer, microbiological H2 consumption, biomass growth, methane formation, and Gibbs free energy yields were evaluated systematically. Combining model predictions and experimental results revealed that an initially large biomass concentration created transients during which biomass consumed [H2 ]L rapidly to the thermodynamic H2 -threshold (≤1 nM) that triggerred the microorganisms to stop H2 oxidation. With no H2 oxidation, continuous gas-to-liquid H2 transfer increased [H2 ]L to a level that signaled the methanogens to resume H2 oxidation. Thus, an oscillatory H2 -concentration profile developed between the thermodynamic H2 -threshold (≤1 nM) and a low [H2 ]L (~10 nM) that relied on the rate of gas-to-liquid H2 -transfer. The transient [H2 ]L values were too low to support biomass synthesis that could balance biomass losses through endogenous oxidation and advection; thus, biomass declined continuously and disappeared. A stable [H2 ]L (1807 nM) emerged as a result of abiotic H2 -balance between gas-to-liquid H2 transfer and H2 removal via advection of liquid-phase.


Assuntos
Hidrogênio , Modelos Teóricos , Anaerobiose , Biomassa , Reatores Biológicos/microbiologia , Metano
16.
Arch Microbiol ; 205(5): 189, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055657

RESUMO

A novel interdomain consortium composed of a methanogenic Archaeon and a sulfate-reducing bacterium was isolated from a microbial biofilm in an oil well in Cahuita National Park, Costa Rica. Both organisms can be grown in pure culture or as stable co-culture. The methanogenic cells were non-motile rods producing CH4 exclusively from H2/CO2. Cells of the sulfate-reducing partner were motile rods forming cell aggregates. They utilized hydrogen, lactate, formate, and pyruvate as electron donors. Electron acceptors were sulfate, thiosulfate, and sulfite. 16S rRNA sequencing revealed 99% gene sequence similarity of strain CaP3V-M-L2AT to Methanobacterium subterraneum and 98.5% of strain CaP3V-S-L1AT to Desulfomicrobium baculatum. Both strains grew from 20 to 42 °C, pH 5.0-7.5, and 0-4% NaCl. Based on our data, type strains CaP3V-M-L2AT (= DSM 113354 T = JCM 39174 T) and CaP3V-S-L1AT (= DSM 113299 T = JCM 39179 T) represent novel species which we name Methanobacterium cahuitense sp. nov. and Desulfomicrobium aggregans sp. nov.


Assuntos
Methanobacterium , Campos de Petróleo e Gás , Methanobacterium/genética , Costa Rica , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Ácidos Graxos
17.
Artigo em Inglês | MEDLINE | ID: mdl-36748601

RESUMO

A novel anaerobic, mesophilic, non-spore-forming bacterium (strain m25T) was isolated from methanogenic enrichment cultures obtained from a lab-scale methanogenic landfill bioreactor containing anaerobic digester sludge. Cells were Gram-stain-negative, catalase-positive, oxidase-negative, rod-shaped, and motile by means of a flagellum. The genomic DNA G+C content was 40.11 mol%. The optimal NaCl concentration, temperature and pH for growth were 2.5 g l-1, 35 °C and at pH 7.0, respectively. Strain m25T was able to grow in the absence of yeast extract on glycerol, pyruvate, arginine and cysteine. In the presence of 0.2 % yeast extract, strain m25T grew on carbohydrates and was able to use glucose, cellobiose, fructose, raffinose and galactose. The novel strain could utilize glycerol, urea, pyruvate, peptone and tryptone. The major fatty acids were iso-C15  :  0, C14  :  0, C16  :  0 DMA (dimethyl acetal) and iso-C15 : 0 DMA. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate was closely related to Lutispora thermophila EBR46T (95.02 % 16S rRNA gene sequence similarity). Genome relatedness was determined using both average nucleotide identity and amino acid identity analyses, the results of which both strongly supported that strain m25T belongs to the genus Lutispora. Based on its unique phylogenetic features, strain m25T is considered to represent a novel species within the genus Lutispora. Moreover, based on its unique physiologic features, mainly the lack of spore formation, a proposal to amend the genus Lutispora is also provided to include the non-spore-forming and mesophilic species. Lutispora saccharofermentans sp. nov. is proposed. The type strain of the species is m25T (=DSM 112749T=ATCC TSD-268T).


Assuntos
DNA Bacteriano , Lactobacillales , Esgotos/microbiologia , Ácidos Graxos/química , Anaerobiose , Filogenia , RNA Ribossômico 16S/genética , Glicerol , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Reatores Biológicos/microbiologia , Bactérias Anaeróbias/genética , Lactobacillales/genética , Clostridiaceae/genética , Piruvatos
18.
Microb Ecol ; 86(2): 1447-1452, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36409329

RESUMO

Methane (CH4) oxidation by methanotrophic bacteria in forest soils is the largest biological sink for this greenhouse gas on earth. However, the compaction of forest soils by logging traffic has previously been shown to reduce the potential rate of CH4 uptake. This change could be due to not only a decrease of methanotrophs but also an increase in methanogen activity. In this study, we investigated whether the decrease in CH4 uptake by forest soils, subjected to compaction by heavy machinery 7 years earlier, can be explained by quantitative and qualitative changes in methanogenic and methanotrophic communities. We measured the functional gene abundance and polymorphism of CH4 microbial oxidizers (pmoA) and producers (mcrA) at different depths and during different seasons. Our results revealed that the soil compaction effect on the abundance of both genes depended on season and soil depth, contrary to the effect on gene polymorphism. Bacterial pmoA abundance was significantly lower in the compacted soil than in the controls across all seasons, except in winter in the 0-10 cm depth interval and in summer in the 10-20 cm depth interval. In contrast, archaeal mcrA abundance was higher in compacted than control soil in winter and autumn in the two soil depths investigated. This study shows the usefulness of using pmoA and mcrA genes simultaneously in order to better understand the spatial and temporal variations of soil CH4 fluxes and the potential effect of physical disturbances.


Assuntos
Euryarchaeota , Solo , Estações do Ano , Bactérias/genética , Oxirredução , Florestas , Metano , Microbiologia do Solo
19.
Environ Sci Technol ; 57(30): 11300-11312, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478352

RESUMO

Marine environments contain diverse halogenated organic compounds (HOCs), both anthropogenic and natural, nourishing a group of versatile organohalide-respiring bacteria (OHRB). Here, we identified a novel OHRB (Peptococcaceae DCH) with conserved motifs but phylogenetically diverse reductive dehalogenase catalytic subunit (RdhAs) from marine enrichment culture. Further analyses clearly demonstrate the horizontal gene transfer of rdhAs among marine OHRB. Moreover, 2,4,6-trichlorophenol (TCP) was dechlorinated to 2,4-dichlorophenol and terminated at 4-chlorophenol in culture. Dendrosporobacter and Methanosarcina were the two dominant genera, and the constructed and verified metabolic pathways clearly demonstrated that the former provided various substrates for other microbes, while the latter drew nutrients, but might provide little benefit to microbial dehalogenation. Furthermore, Dendrosporobacter could readily adapt to TCP, and sporulation-related proteins of Dendrosporobacter were significantly upregulated in TCP-free controls, whereas other microbes (e.g., Methanosarcina and Aminivibrio) became more active, providing insights into how HOCs shape microbial communities. Additionally, sulfate could affect the dechlorination of Peptococcaceae DCH, but not debromination. Considering their electron accessibility and energy generation, the results clearly demonstrate that bromophenols are more suitable than chlorophenols for the enrichment of OHRB in marine environments. This study will greatly enhance our understanding of marine OHRB (rdhAs), auxiliary microbes, and microbial HOC adaptive mechanisms.

20.
Environ Sci Technol ; 57(6): 2584-2594, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36731122

RESUMO

The combination of anaerobic digestion (AD) and microbial electrochemical technologies (METs) offers different opportunities to increase the efficiency and sustainability of AD processes. However, methanogenic archaea and/or particles may partially hinder combining MET and AD processes. Furthermore, it is unclear if the applied anode potential affects the activity and efficiency of electroactive microorganisms in AD-MET combinations as it is described for more controlled experimental conditions. In this study, we confirm that 6-week-old Geobacter spp. dominated biofilms are by far more active and stable in AD-effluents than 3-week-old Geobacter spp. dominated biofilms. Furthermore, we show that the biofilms are twice as active at -0.2 V compared to 0.4 V, even under challenging conditions occurring in AD-MET systems. Paired-end amplicon sequencing at the DNA level using 16S-rRNA and mcrA gene shows that hydrogenotrophic methanogens incorporate into biofilms immersed in AD-effluent without any negative effect on biofilm stability and electrochemical activity.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Anaerobiose , Biofilmes , Eletrodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa