Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38549434

RESUMO

With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.


Assuntos
Bactérias , Biodegradação Ambiental , Cafeína , Fungos , Cafeína/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Fungos/metabolismo , Fungos/genética , Leveduras/metabolismo , Leveduras/genética
2.
Biotechnol Appl Biochem ; 70(1): 22-27, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35196743

RESUMO

Tea is a worldwide consumed herbal beverage and it was aimed in this study to reveal the major fractions of green and black tea in order to enlighten the in vitro inhibition potency on the well-known drug metabolizing enzyme CYP2D6 activity. Methylxanthine fractions were extracted from green and black tea and a yield of 0.265 g (1.06%) for 25 g of dried black tea and 0.302 g (1.2%) for 25 g of green tea was calculated. High-performance liquid chromatography analysis represented that the major components of the methylxanthine fractions were caffeine, theobromine, and theophylline. Methylxanthine content of black tea was 368.25 ± 4.6 µg/ml caffeine, 89.30 ± 2.3 µg/ml theobromine, and 3.40 ± 0.5 µg/ml theophylline, whereas that of green tea was 176.50 ± 3.7 µg/ml caffeine, 53.85 ± 1.4 µg/ml theobromine, and 2.06 ± 0.7 µg/ml theophylline. The results of concentration-dependent inhibition studies were 76% green tea, 75% black tea, and 55% caffeine at concentration of 10 mg/ml. The inhibition rates of green and black tea on CYP2D6 activity were 76% and 75%, respectively, where that of quinidine, the well-known inhibitor of CYP2D6, was 82%. Our results indicate that green and black tea is very likely to modify the CYP2D6 enzyme activity.


Assuntos
Camellia sinensis , Camellia sinensis/química , Cafeína/farmacologia , Cafeína/análise , Teofilina/farmacologia , Teofilina/análise , Citocromo P-450 CYP2D6 , Teobromina/farmacologia , Teobromina/análise , Turquia , Chá/química
3.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139396

RESUMO

Experimental studies reveal that caffeine (trimethylxanthine) at subconvulsive doses, distinctly reduced the anticonvulsant activity of numerous antiseizure medications (ASMs) in rodents, oxcarbazepine, tiagabine and lamotrigine being the exceptions. Clinical data based on low numbers of patients support the experimental results by showing that caffeine (ingested in high quantities) may sharply increase seizure frequency, considerably reducing the quality of patients' lives. In contrast, this obviously negative activity of caffeine was not found in clinical studies involving much higher numbers of patients. ASMs vulnerable to caffeine in experimental models of seizures encompass carbamazepine, phenobarbital, phenytoin, valproate, gabapentin, levetiracetam, pregabalin and topiramate. An inhibition of R-calcium channels by lamotrigine and oxcarbazepine may account for their resistance to the trimethylxanthine. This assumption, however, is complicated by the fact that topiramate also seems to be a blocker of R-calcium channels. A question arises why large clinical studies failed to confirm the results of experimental and case-report studies. A possibility exists that the proportion of patients taking ASMs resistant to caffeine may be significant and such patients may be sufficiently protected against the negative activity of caffeine.


Assuntos
Anticonvulsivantes , Cafeína , Humanos , Lamotrigina/farmacologia , Lamotrigina/uso terapêutico , Oxcarbazepina/uso terapêutico , Cafeína/farmacologia , Cafeína/uso terapêutico , Topiramato/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Convulsões/tratamento farmacológico , Canais de Cálcio
4.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446053

RESUMO

Uric acid lithiasis accounts for about 10% of all types of renal lithiasis. The most common causes of uric acid lithiasis are low urinary pH, followed by high concentration of urinary uric acid, and low diuresis. Treatment of patients consists of alkalinization of urine, reducing the consumption of purine-rich foods, and administration of xanthine oxidase inhibitors, because there are no established therapeutic inhibitors of uric acid crystallization. We recently found that theobromine inhibited uric acid crystallization in vitro, and that the increased urinary level of theobromine following its oral consumption was associated with the prevention of uric acid crystallization. In this study, we evaluated the inhibitory effects of theobromine metabolites and other methylxanthine-related compounds on uric acid crystallization. We also measured the urinary concentrations of theobromine and its metabolites in samples from healthy individuals and patients with uric acid stones and compared the extent of uric acid supersaturation and uric acid crystal formation in these different samples. Theobromine and other methylxanthines that lacked a substituent at position 1 inhibited uric acid crystallization, but other methylxanthines did not have this effect. Individuals with clinical parameters that favored uric acid crystallization did not develop uric acid crystals when theobromine and its metabolites were in the urine at high levels. Thus, theobromine and its metabolites reduced the risk of uric acid lithiasis.


Assuntos
Litíase , Nefrolitíase , Humanos , Ácido Úrico/química , Teobromina , Preparações Farmacêuticas
5.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216410

RESUMO

Alzheimer's disease (AD) is characterized by an increased plaque burden and tangle accumulation in the brain accompanied by extensive lipid alterations. Methylxanthines (MTXs) are alkaloids frequently consumed by dietary intake known to interfere with the molecular mechanisms leading to AD. Besides the fact that MTX consumption is associated with changes in triglycerides and cholesterol in serum and liver, little is known about the effect of MTXs on other lipid classes, which raises the question of whether MTX can alter lipids in a way that may be relevant in AD. Here we have analyzed naturally occurring MTXs caffeine, theobromine, theophylline, and the synthetic MTXs pentoxifylline and propentofylline also used as drugs in different neuroblastoma cell lines. Our results show that lipid alterations are not limited to triglycerides and cholesterol in the liver and serum, but also include changes in sphingomyelins, ceramides, phosphatidylcholine, and plasmalogens in neuroblastoma cells. These changes comprise alterations known to be beneficial, but also adverse effects regarding AD were observed. Our results give an additional perspective of the complex link between MTX and AD, and suggest combining MTX with a lipid-altering diet compensating the adverse effects of MTX rather than using MTX alone to prevent or treat AD.


Assuntos
Doença de Alzheimer/metabolismo , Lipídeos/fisiologia , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Xantinas/farmacologia , Cafeína/farmacologia , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Pentoxifilina/farmacologia , Teobromina/farmacologia , Teofilina/farmacologia , Triglicerídeos/metabolismo
6.
Molecules ; 27(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408468

RESUMO

The aim of this study was to evaluate the levels of chemical markers in raw cacao beans in two clones (introduced and regional) in Colombia over several years. Multivariate statistical methods were used to analyze the flavanol monomers (epicatechin and catechin), flavanol oligomers (procyanidins) and methylxanthine alkaloids (caffeine and theobromine) of cocoa samples. The results identified genotype as the main factor contributing to cacao chemistry, although significant differences were not observed between universal and regional clones in PCA. The univariate analysis allowed us to establish that EET-96 had the highest contents of both flavanol monomers (13.12 ± 2.30 mg/g) and procyanidins (7.56 ± 4.59 mg/g). In addition, the geographic origin, the harvest conditions of each region and the year of harvest may contribute to major discrepancies between results. Turbo cocoa samples are notable for their higher flavanol monomer content, Chigorodó cocoa samples for the presence of both types of polyphenol (monomer and procyanidin contents) and the Northeast cocoa samples for the higher methylxanthine content. We hope that knowledge of the heterogeneity of the metabolites of interest in each clone will contribute to the generation of added value in the cocoa production chain and its sustainability.


Assuntos
Cacau , Catequina , Proantocianidinas , Cacau/química , Catequina/química , Colômbia , Produtos Agrícolas , Flavonoides/análise , Genótipo , Polifenóis/análise , Proantocianidinas/análise , Xantinas
7.
Molecules ; 27(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36557921

RESUMO

Xanthine derivatives have been a great area of interest for the development of potent bioactive agents. Thirty-eight methylxanthine derivatives as acetylcholinesterase inhibitors (AChE) were designed and synthesized. Suzuki-Miyaura cross-coupling reactions of 8-chlorocaffeine with aryl(hetaryl)boronic acids, the CuAAC reaction of 8-ethynylcaffeine with several azides, and the copper(I) catalyzed one-pot three-component reaction (A3-coupling) of 8-ethynylcaffeine, 1-(prop-2-ynyl)-, or 7-(prop-2-ynyl)-dimethylxanthines with formaldehyde and secondary amines were the main approaches for the synthesis of substituted methylxanthine derivatives (yield 53-96%). The bioactivity of all new compounds was evaluated by Ellman's method, and the results showed that most of the synthesized compounds displayed good and moderate acetylcholinesterase (AChE) inhibitory activities in vitro. The structure-activity relationships were also discussed. The data revealed that compounds 53, 59, 65, 66, and 69 exhibited the most potent inhibitory activity against AChE with IC50 of 0.25, 0.552, 0.089, 0.746, and 0.121 µM, respectively. The binding conformation and simultaneous interaction modes were further clarified by molecular docking studies.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Xantinas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular
8.
Molecules ; 27(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268725

RESUMO

The annual production of cocoa is approximately 4.7 million tons of cocoa beans, of which only 10% corresponds to the cocoa bean and the remaining value corresponds to a high number of residues, cocoa bean shell, pulp and husk. These by-products are a source of nutrients and compounds of notable interest in the food industry as possible ingredients, or even additives. The assessment of such by-products is relevant to the circular economy at both environmental and economic levels. Investigations carried out with these by-products have shown that cocoa husk can be used for the production of useful chemicals such as ketones, carboxylic acids, aldehydes, furans, heterocyclic aromatics, alkylbenzenes, phenols and benzenediols, as well as being efficient for the removal of lead from acidic solutions, without decay in the process due to the other metals in this matrix. The fibre present in the cocoa bean shell has a considerable capacity to adsorb a large amount of oil and cholesterol, thus reducing its bioavailability during the digestion process, as well as preventing lipid oxidation in meats, with better results compared to synthetic antioxidants (butylated hydroxytoluene and ß-tocopherol). Finally, cocoa pulp can be used to generate a sweet and sour juice with a natural flavour. Thus, this review aimed to compile information on these by-products, focusing mainly on their chemical and nutritional composition, simultaneously, the various uses proposed in the literature based on a bibliographic review of articles, books and theses published between 2000 and 2021, using databases such as Scopus, Web of Science, ScieLO, PubMed and ResearchGate.


Assuntos
Chocolate
9.
Bioorg Chem ; 111: 104900, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894429

RESUMO

Due to their unique pharmacological characteristics, methylxanthines are known as therapeutic agents in a fascinating range of medicinal scopes. In this report, we aimed to examine some biological effects of previously synthesized 8-alkylmercaptocaffeine derivatives. Cytotoxic and antioxidative activity of 8-alkylmercaptocaffeine derivatives were measured in malignant A549, MCF7, and C152 cell lines. Assessment of cGMP levels and caspase-3 activity were carried out using a colorimetric competitive ELISA kit. Computational approaches were employed to discover the inhibitory mechanism of synthesized compounds. Among the twelve synthesized derivatives, three compounds (C1, C5, and C7) bearing propyl, heptyl, and 3-methyl-butyl moieties showed higher and more desirable cytotoxic activity against all the studied cell lines (IC50 < 100 µM). Furthermore, C5 synergistically enhanced cisplatin-induced cytotoxicity in MCF-7 cells (CI < 1). Both C5 and C7 significantly increased caspase-3 activity and intracellular cGMP levels at specific time intervals in all studied cell lines (P < 0.05). However, these derivatives did not elevate LDH leakage (P > 0.05) and exhibited no marked ameliorating effects on oxidative damage (P > 0.05). Computational studies showed that H-bond formation between the nitrogen atom in pyrazolo[4,3-D] pyrimidine moiety with Gln817 and creating a hydrophobic cavity result in the stability of the alkyl group in the PDE5A active site. We found that synthesized 8-alkylmercaptocaffeine derivatives induced cell death in different cancer cells through the cGMP pathway. These findings will help us to get a deeper insight into the role of methylxanthines as useful alternatives to conventional cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Cafeína/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Cafeína/análogos & derivados , Cafeína/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade
10.
J Sep Sci ; 44(23): 4274-4283, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626085

RESUMO

Caffeine is a widely consumed psychostimulant with several mechanisms of action and various positive and negative effects on organisms. Caffeine undergoes extensive hepatic metabolism to form main metabolites such as theobromine, theophylline, paraxanthine, and 1,3,7-trimethyluric acid. However, interspecies diversities have been observed in caffeine metabolism. In the present study, we developed a sensitive and straightforward ultra-high-performance liquid chromatography-tandem mass spectrometry method to quantify caffeine and its primary metabolites, namely theobromine, theophylline, paraxanthine, and 1,3,7-trimethyluric acid in rat plasma. After extraction of analytes using micro solid-phase extraction plate, analytes were separated by elution gradient on the Acquity UPLC HSS T3 (50 × 2.1 mm, 1.8 µm) column over 4 min. The detection was done on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring modes using a positive electrospray ionization interface. The method was successfully validated according to the European Medicine Agency guideline over a concentration range of 5-1500 ng/ml for caffeine, 5-1200 ng/mL for theobromine, and 2.5-1200 ng/mL for theophylline, paraxanthine, and 1,3,7-trimethyluric acid. The developed method was applied to analyze samples from animal experiments focusing on the metabolism and effects of caffeine and caffeine-containing beverages.


Assuntos
Cafeína/sangue , Teobromina/sangue , Teofilina/sangue , Animais , Cafeína/metabolismo , Cromatografia Líquida de Alta Pressão , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem , Teobromina/metabolismo , Teofilina/metabolismo , Ácido Úrico/análogos & derivados
11.
Eur J Appl Physiol ; 121(3): 749-769, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33403509

RESUMO

Caffeine is a popular ergogenic aid due to its primary physiological effects that occur through antagonism of adenosine receptors in the central nervous system. This leads to a cascade of physiological reactions which increases focus and volition, and reduces perception of effort and pain, contributing to improved exercise performance. Substantial variability in the physiological and performance response to acute caffeine consumption is apparent, and a growing number of studies are implicating a single-nucleotide polymorphism in the CYP1A2 gene, responsible for caffeine metabolism, as a key factor that influences the acute responses to caffeine ingestion. However, existing literature regarding the influence of this polymorphism on the ergogenic effects of caffeine is controversial. Fast caffeine metabolisers (AA homozygotes) appear most likely to benefit from caffeine supplementation, although over half of studies showed no differences in the responses to caffeine between CYP1A2 genotypes, while others even showed either a possible advantage or disadvantage for C-allele carriers. Contrasting data are limited by weak study designs and small samples sizes, which did not allow separation of C-allele carriers into their sub-groups (AC and CC), and insufficient mechanistic evidence to elucidate findings. Mixed results prevent practical recommendations based upon genotype while genetic testing for CYP1A2 is also currently unwarranted. More mechanistic and applied research is required to elucidate how the CYP1A2 polymorphism might alter caffeine's ergogenic effect and the magnitude thereof, and whether CYP1A2 genotyping prior to caffeine supplementation is necessary.


Assuntos
Desempenho Atlético/fisiologia , Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Citocromo P-450 CYP1A2/genética , Exercício Físico , Humanos , Polimorfismo de Nucleotídeo Único
12.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063734

RESUMO

In this study, we report the effects of caffeine on angiogenesis in zebrafish embryos both during normal development and after exposure to Fibroblast Growth Factor 2 (FGF2). As markers of angiogenesis, we measured the length and width of intersegmental vessels (ISVs), performed whole-mount in situ hybridization with fli1 and cadh5 vascular markers, and counted the number of interconnecting vessels (ICVs) in sub-intestinal venous plexus (SIVP). In addition, we measured angiogenesis after performing zebrafish yolk membrane (ZFYM) assay with microinjection of fibroblast growth factor 2 (FGF2) and perivitelline tumor xenograft assay with microinjection of tumorigenic FGF2-overexpressing endothelial (FGF2-T-MAE) cells. The results showed that caffeine treatment causes a shortening and thinning of ISVs along with a decreased expression of the vascular marker genes and a decrease in the number of ICVs in the SIVP. Caffeine was also able to block angiogenesis induced by exogenous FGF2 or FGF2-producing cells. Overall, our results are suggestive of the inhibitory effect of caffeine in both direct and indirect angiogenesis.


Assuntos
Cafeína/farmacologia , Fator 2 de Crescimento de Fibroblastos/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Embrião não Mamífero , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Xenoenxertos , Humanos , Hibridização In Situ , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Fisiológica/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
13.
Molecules ; 26(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34946510

RESUMO

Methylxanthines and polyphenols from cocoa byproducts should be considered for their application in the development of functional ingredients for food, cosmetic and pharmaceutical formulations. Different cocoa byproducts were analyzed for their chemical contents, and skincare properties were measured by antioxidant assays and anti-skin aging activity. Musty cocoa beans (MC) and second-quality cocoa beans (SQ) extracts showed the highest polyphenol contents and antioxidant capacities. In the collagenase and elastase inhibition study, the highest effect was observed for the SQ extract with 86 inhibition and 36% inhibition, respectively. Among cocoa byproducts, the contents of catechin and epicatechin were higher in the SQ extract, with 18.15 mg/100 g of sample and 229.8 mg/100 g of sample, respectively. Cocoa bean shells (BS) constitute the main byproduct due to their methylxanthine content (1085 mg of theobromine and 267 mg of caffeine/100 g of sample). Using BS, various influencing factors in the extraction process were investigated by response surface methodology (RSM), before scaling up separations. The extraction process developed under optimized conditions allows us to obtain almost 2 g/min and 0.2 g/min of total methylxanthines and epicatechin, respectively. In this way, this work contributes to the sustainability and valorization of the cocoa production chain.


Assuntos
Antioxidantes/isolamento & purificação , Cacau/química , Catequina/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Xantinas/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Catequina/química , Catequina/farmacologia , Colagenases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Elastase Pancreática/antagonistas & inibidores , Elastase Pancreática/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Xantinas/química , Xantinas/farmacologia
14.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201708

RESUMO

Caffeine is a plant alkaloid present in food and beverages consumed worldwide. It has high lipid solubility with recognized actions in the central nervous system and in peripheral tissues, notably the adipose depots. However, the literature is scant regarding caffeine's influence on adipocyte functions other than lipolysis, such as glucose incorporation into lipids (lipogenesis) and amine oxidation. The objective of this study was to explore the direct effects of caffeine and of isobutylmethylxanthine (IBMX) on these adipocyte functions. Glucose transport into fat cells freshly isolated from mice, rats, or humans was monitored by determining [3H]-2-deoxyglucose (2-DG) uptake, while the incorporation of radiolabeled glucose into cell lipids was used as an index of lipogenic activity. Oxidation of benzylamine by primary amine oxidase (PrAO) was inhibited by increasing doses of caffeine in human adipose tissue preparations with an inhibition constant (Ki) in the millimolar range. Caffeine inhibited basal and insulin-stimulated glucose transport as well as lipogenesis in rodent adipose cells. The antilipogenic action of caffeine was also observed in adipocytes from mice genetically invalidated for PrAO activity, indicating that PrAO activity was not required for lipogenesis inhibition. These caffeine inhibitory properties were extended to human adipocytes: relative to basal 2-DG uptake, set at 1.0 ± 0.2 for 6 individuals, 0.1 mM caffeine tended to reduce uptake to 0.83 ± 0.08. Insulin increased uptake by 3.86 ± 1.11 fold when tested alone at 100 nM, and by 3.21 ± 0.80 when combined with caffeine. Our results reinforce the recommendation of caffeine's potential in the treatment or prevention of obesity complications.


Assuntos
Adipócitos/efeitos dos fármacos , Aminas Biogênicas/metabolismo , Cafeína/farmacologia , Glucose/metabolismo , Lipogênese/efeitos dos fármacos , Monoaminoxidase/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Benzilaminas/metabolismo , Transporte Biológico/efeitos dos fármacos , Desoxiglucose/metabolismo , Humanos , Insulina/metabolismo , Lipólise/efeitos dos fármacos , Camundongos , Ratos , Xantinas/farmacologia
15.
Crit Rev Food Sci Nutr ; 60(12): 1947-1985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31124371

RESUMO

Cocoa beans and their co-products are a rich source of beneficial compounds for health promotion, including polyphenols and methylxanthines. Knowledge of bioavailability and in vivo bioactivity of these phytochemicals is crucial to understand their role and function in human health. Therefore, many studies concerning bioavailability and bioactivity of cocoa bioactive compound have been done in both in vivo animal models and in humans. This critical review comprehensively summarizes the existing knowledge about the bioavailability and the major metabolic pathways of selected cocoa bioactive compounds (i.e. monomeric flavan-3-ols, procyanidins, anthocyanins, flavonols, phenolic acids, N-phenylpropenoyl-L-amino acids, stilbenes, and methylxanthines). The compiled results indicated that many of these compounds undergo extensive metabolism prior to absorption. Different factors have been suggested to influence the bioavailability of polyphenols and methylxanthines among them the role of gut microbiota, structure of these compounds, food matrix and occurrence of other substances were the most often considered. Aforementioned factors decided about the site where these bioactive compounds are digested and absorbed from the alimentary tract, as well as the pathway by which they are metabolized. These factors also determine of the type of transport through the intestine barrier (passive, involving specific enzymes or mediated by specific transporters) and their metabolic path and profile.


Assuntos
Produtos Biológicos/metabolismo , Produtos Biológicos/farmacocinética , Cacau/química , Cacau/metabolismo , Flavonoides/farmacocinética , Polifenóis/farmacocinética , Animais , Disponibilidade Biológica , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Humanos , Polifenóis/isolamento & purificação , Polifenóis/metabolismo
16.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260941

RESUMO

Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer's disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines-caffeine, theophylline and theobromine-and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.


Assuntos
Doença de Alzheimer/genética , Cafeína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Neuroblastoma/genética , Xantinas/farmacologia , Linhagem Celular Tumoral , Genes Essenciais , Humanos , Pentoxifilina/farmacologia , Análise de Componente Principal , Teobromina/farmacologia , Teofilina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Xantinas/química
17.
Pulm Pharmacol Ther ; 59: 101851, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31563516

RESUMO

BACKGROUND: Methylxanthines are important pharmacological agents in the treatment of asthma and of chronic obstructive pulmonary diseases. The present study was designed to compare the ability of doxofylline and theophylline to modulate inflammatory pathways in human monocytes. METHODS: Monocytes isolated from healthy anonymous human buffy coats were treated with doxofylline or theophylline in the presence of phorbol 12-myristate 13-acetate (PMA) or lipopolysaccharide (LPS), and their phenotype, the oxidative burst, cytokine expression and release, cAMP production, and protein kinase C (PKC) activity were evaluated. RESULTS: Doxofylline and theophylline did not have overlapping effects on human monocytes. While sharing some common characteristics, they differed significantly in their selectivity. Theophylline affected LPS- above PMA-induced cellular responsivity, while doxofylline behaved in the opposite manner. Furthermore, when testing PKC activity, we found an inhibitory effect of doxofylline but not of theophylline, at equimolar doses. CONCLUSIONS: In conclusion, our data support the growing hypothesis that doxofylline does not have a superimposable mechanism of action compared to theophylline, and this may both explain some differences in the risk/benefit ratio and may direct studies to tailor therapy for patients.


Assuntos
Anti-Inflamatórios/farmacologia , Monócitos/efeitos dos fármacos , Teofilina/análogos & derivados , Teofilina/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipopolissacarídeos , Monócitos/patologia , Proteína Quinase C/metabolismo , Acetato de Tetradecanoilforbol/análogos & derivados
18.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766549

RESUMO

Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to - interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10-10 mol L-1 and 1.8 × 10-9 mol L-1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.


Assuntos
Grafite/química , Xantinas/análise , Xantinas/isolamento & purificação , Adsorção , Humanos , Xantinas/química
19.
Biochim Biophys Acta Gen Subj ; 1862(8): 1781-1789, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29763642

RESUMO

BACKGROUND: Antioxidant properties have been recently suggested for caffeine that seems showing protective effects against damages caused by oxidative stress. In particular, a HO scavenging activity has been ascribed to caffeine. Even if the oxidation of caffeine has been widely studied, the antioxidant mechanism is still far to be understood. METHODS: The electrochemical behavior of caffeine, theobromine and theophylline was studied in aprotic medium by cyclic voltammetry and electrolysis in UV-vis cell; a computational analysis of the molecular structures based on the Density Functional Theory was performed; the reactivity of all substrates towards lead dioxide, superoxide and galvinoxyl radical was followed by UV-vis spectrophotometry. RESULTS: Results supported the mono-electronic oxidation of the C4C5 bond for all substrates at high oxidation potentials, the electron-transfer process leading to a radical cation or a neutral radical according to the starting methylxanthine N7-substituted (caffeine and theobromine) or N7-unsubstituted (theophylline), respectively. A different following chemical fate might be predicted for the radical cation or the neutral radical. No interaction was evidenced towards the tested reactive oxygen species. CONCLUSIONS: No reactivity via H-atom transfer was evidenced for all studied compounds, suggesting that an antiradical activity should be excluded. Some reactivity only with strong oxidants could be predicted via electron-transfer. The acclaimed HO scavenging activity should be interpreted in these terms. The study suggested that CAF might be hardly considered an antioxidant. GENERAL SIGNIFICANCE: Beyond the experimental methods used, the discussion of the present results might provide food for thought to the wide audience working on antioxidants.


Assuntos
Antioxidantes/química , Cafeína/química , Estresse Oxidativo , Espécies Reativas de Oxigênio/química , Teobromina/química , Teofilina/química , Broncodilatadores/química , Estimulantes do Sistema Nervoso Central/química , Humanos , Oxirredução , Solventes
20.
J Proteome Res ; 16(7): 2516-2526, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28585834

RESUMO

Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. 1H NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism.


Assuntos
Chocolate/análise , Flavonoides/administração & dosagem , Metaboloma/fisiologia , Compostos Fitoquímicos/administração & dosagem , Aminoácidos/sangue , Aminoácidos/urina , Creatinina/sangue , Creatinina/urina , Estudos Cross-Over , Feminino , Flavonoides/sangue , Flavonoides/urina , Humanos , Ácido Láctico/sangue , Ácido Láctico/urina , Masculino , Metabolômica/métodos , Fenilacetatos/sangue , Fenilacetatos/urina , Compostos Fitoquímicos/sangue , Compostos Fitoquímicos/urina , Período Pós-Prandial , Ácido Pirúvico/sangue , Ácido Pirúvico/urina , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa