Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Neurobiol Dis ; 192: 106415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266934

RESUMO

AIMS: The prevalence of depression is higher in heart failure (HF) patients. Early screening of depressive symptoms in HF patients and timely intervention can help to improve patients' quality of life and prognosis. This study aims to explore diagnostic biomarkers by examining the expression profile of serum exosomal miRNAs in HF patients with depressive symptoms. METHODS: Serum exosomal RNA was isolated and extracted from 6 HF patients with depressive symptoms (HF-DS) and 6 HF patients without depressive symptoms (HF-NDS). High-throughput sequencing was performed to obtain miRNA expression profiles and target genes were predicted for the screened differentially expressed miRNAs. Biological functions of the target genes were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, we collected serum exosomal RNAs from HF-DS (n = 20) and HF-NDS (n = 20). The differentially expressed miRNAs selected from the sequencing results were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Finally, the diagnostic efficacy of the differentially expressed exosomal miRNAs for HF-DS was evaluated by using receiver operating characteristic (ROC) curves. RESULTS: A total of 19 significantly differentially expressed exosomal miRNAs were screened by high-throughput sequencing, consisting of 12 up-regulated and 7 down-regulated exosomal miRNAs. RT-qPCR validation demonstrated that the expression level of exo-miR-144-3p was significantly down-regulated in the HF-DS group, and the expression levels of exo-miR-625-3p and exo-miR-7856-5p were significantly up-regulated. In addition, the expression level of exo-miR-144-3p was negatively correlated with the severity of depressive symptoms in HF patients, and that the area under the curve (AUC) of exo-miR-144-3p for diagnosing HF-DS was 0.763. CONCLUSIONS: In this study, we examined the serum exosomal miRNA expression profiles of HF patients with depressive symptoms and found that lower level of exo-miR-144-3p was associated with more severe depressive symptoms. Exo-miR-144-3p is a potential biomarker for the diagnosis of HF-DS.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Humanos , Depressão/diagnóstico , Qualidade de Vida , MicroRNAs/genética , Biomarcadores , Insuficiência Cardíaca/diagnóstico
2.
BMC Cancer ; 24(1): 79, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225540

RESUMO

BACKGROUND: GEFT is a key regulator of tumorigenesis in rhabdomyosarcoma (RMS), and overexpression of GEFT is significantly correlated with distant metastasis, lymph node metastasis, and a poor prognosis, yet the underlying molecular mechanism is still poorly understood. This study aimed to investigate and validate the molecular mechanism of GEFT-activated lncRNAs in regulating mTOR expression to promote the progression of RMS. METHODS: GEFT-regulated lncRNAs were identified through microarray analysis. The effects of GEFT-regulated lncRNAs on the proliferation, apoptosis, invasion, and migration of RMS cells were confirmed through cell functional experiments. The target miRNAs of GEFT-activated lncRNAs in the regulation of mTOR expression were predicted by bioinformatics analysis combined with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression of lnc-PSMA8-1, miR-144-3p, and mTOR was measured by qRT-PCR in RMS tissue samples and cell lines. The regulatory mechanisms of the lnc-PSMA8-1-miR-144-3p-mTOR signaling axis were verified by RNA-binding protein immunoprecipitation (RIP), a luciferase reporter assay, qRT-PCR analysis, Western blot analysis, and cell functional experiments. RESULTS: The microarray-based analysis identified 31 differentially expressed lncRNAs (fold change > 2.0, P < 0.05). Silencing the 4 upregulated lncRNAs (lnc-CEACAM19-1, lnc-VWCE-2, lnc-GPX7-1, and lnc-PSMA8-1) and overexpressing the downregulated lnc-FAM59A-1 inhibited the proliferation, invasion, and migration and induced the apoptosis of RMS cells. Among the factors analyzed, the expression of lnc-PSMA8-1, miR-144-3p, and mTOR in RMS tissue samples and cells was consistent with the correlations among their expression indicated by the lncRNA-miRNA-mRNA regulatory network based on the ceRNA hypothesis. lnc-PSMA8-1 promoted RMS progression by competitively binding to miR-144-3p to regulate mTOR expression. CONCLUSION: Our research demonstrated that lnc-PSMA8-1 was activated by GEFT and that the former positively regulated mTOR expression by sponging miR-144-3p to promote the progression of RMS. Therefore, targeting this network may constitute a potential therapeutic approach for the management of RMS.


Assuntos
MicroRNAs , RNA Longo não Codificante , Rabdomiossarcoma , Serina-Treonina Quinases TOR , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
3.
J Biochem Mol Toxicol ; 38(1): e23565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867456

RESUMO

This study was designed to explore the role of circ_0001982 in breast cancer (BC) development. Quantitative real-time polymerase chain reaction and western blot analysis assays were used to determine circ_0001982, miR-144-3p, and gse1 coiled-coil protein (GSE1) expression. Functional assays were performed to evaluate cell proliferation, apoptosis, migration, and invasion. The glycolysis was analyzed with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assays were conducted to analyze the relationships among circ_0001982, miR-144-3p, and GSE1. A murine xenograft model assay was performed to determine circ_0001982-induced effects on BC cell tumor properties in vivo. Circ_0001982 expression was upregulated, but miR-144-3p was reduced in BC tissues and cells in comparison with normal breast tissues and normal human mammary epithelial cells. Circ_0001982 knockdown or miR-144-3p overexpression inhibited BC cell proliferation, glycolysis, migration and invasion, and promoted apoptosis. Circ_0001982 sponged miR-144-3p and negatively regulated miR-144-3p expression in BC cells. In addition, GSE1 was identified as a target mRNA of miR-144-3p. Ectopic GSE1 expression relieved circ_0001982 depletion-induced effects on BC cell tumor properties. Furthermore, circ_0001982 absence suppressed BC cell tumor properties in vivo. Circ_0001982 contributed to the BC cell tumor properties by regulating the miR-144-3p-GSE1 axis.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/genética , Mama , Apoptose , Western Blotting , Proliferação de Células , MicroRNAs/genética , Linhagem Celular Tumoral , Proteínas de Neoplasias
4.
J Cell Mol Med ; 27(2): 189-203, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541023

RESUMO

Circular RNAs (circRNAs) are often found in eukaryocyte and have a role in the pathogenesis of a variety of human disorders. Our related research has shown the differential expression of circRNAs in periprosthetic osteolysis (PPOL). However, the involvement of circRNAs in the exact process is yet unknown. CircSLC8A1 expression was evaluated in clinical samples and human bone marrow mesenchymal stem cells (hBMSCs) in this investigation using quantitative real-time PCR. In vitro and in vivo studies were conducted to explicate its functional role and pathway. We demonstrated CircSLC8A1 is involved in PPOL using gain- and loss-of-function methods. The association of CircSLC8A1 and miR-144-3p, along with miR-144-3p and RUNX1, was predicted using bioinformatics. RNA pull-down and luciferase assays confirmed it. The impact of CircSLC8A1 in the PPOL-mouse model was also investigated using adeno-associated virus. CircSLC8A1 was found to be downregulated in PPOL patients' periprosthetic tissues. Overexpression of CircSLC8A1 promoted osteogenic differentiation (OD) and inhibited apoptosis of hBMSCs in vitro. The osteogenic markers of RUNX1, osteopontin (OPN) and osteocalcin (OCN) were significantly upregulated in hBMSCs after miR-144-3p inhibitor was transferred. Mechanistic analysis demonstrated that CircSLC8A1 directly bound to miR-144-3p and participated in PPOL through the miR-144-3p/RUNX1 pathway in hBMSCs. Micro-CT and quantitative analysis showed that CircSLC8A1 markedly inhibited PPOL, and osteogenic markers (RUNX1, OPN and OCN) were significantly increased (P<0.05) in the mice model. Our findings prove that CircSLC8A1 exerted a regulatory role in promoting osteogenic differentiation in hBMSCs, and CircSLC8A1/miR-144-3p/RUNX1 pathway may provide a potential target for prevention of PPOL.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteólise , Animais , Camundongos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Osteogênese/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Osteólise/genética , Osteólise/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/metabolismo , Células Cultivadas
5.
Mol Cancer ; 22(1): 113, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461104

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most prevalent orthopedic malignancy with a dismal prognosis. The high iron absorption rate in OS cells of patients suggests that ferroptosis may be related to the progression of OS, but its potential molecular regulatory role is still unclear. Based on the ability to couple with exosomes for targeted delivery of signals, exosome-derived micro ribonucleic acids (miRNAs) can potentially serve as diagnostic biomarkers for OS. METHODS: We identified ferroptosis-related miRNAs and messenger ribonucleic acids(mRNAs) in OS using bioinformatics analysis and performed survival analysis. Then we measured miRNA expression levels through exosome microarray sequencing, and used RT-qPCR and IHC to verify the expression level of miR-144-3p and ZEB1. Stable gene expression cell lines were fabricated for in vitro experiments. Cell viability, migration and invasion were determined by CCK-8 and transwell experiment. Use the corresponding reagent kit to detect GSH/GSSG ratio, Fe2+ level, MDA level and ROS level, and measure the expression levels of GPX4, ACSL4 and xCT through RT-qPCR and WB. We also constructed nude mice model for in vivo experiments. Finally, the stability of the miRNA/mRNA axis was verified through functional rescue experiments. RESULTS: Low expression of miR-144-3p and high expression of ZEB1 in OS cell lines and tissues was observed. Overexpression of miR-144-3p can promote ferroptosis, reduce the survival ability of OS cells, and prevent the progression of OS. In addition, overexpression of miR-144-3p can downregulate the expression of ZEB1 in cell lines and nude mice. Knockdown of miR-144-3p has the opposite effect. The functional rescue experiment validated that miR-144-3p can regulate downstream ZEB1, and participates in the occurrence and development of OS by interfering with redox homeostasis and iron metabolism. CONCLUSIONS: MiR-144-3p can induce the occurrence of ferroptosis by negatively regulating the expression of ZEB1, thereby inhibiting the proliferation, migration, and invasion of OS cells.


Assuntos
Neoplasias Ósseas , Exossomos , Ferroptose , MicroRNAs , Osteossarcoma , Animais , Camundongos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Exossomos/metabolismo , Ferroptose/genética , Ferro , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/patologia , Humanos
6.
Int J Exp Pathol ; 104(3): 117-127, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36806218

RESUMO

Aerobic glycolysis is a unique mark of cancer cells, which enables therapeutic intervention in cancer. Forkhead box K1 (FOXK1) is a transcription factor that facilitates the progression of multiple cancers including hepatocellular carcinoma (HCC). Nevertheless, it is unclear whether or not FOXK1 can affect HCC cell glycolysis. This study attempted to study the effect of FOXK1 on HCC cell glycolysis. Expression of mature miRNAs and mRNAs, as well as clinical data, was downloaded from The Cancer Genome Atlas-Liver hepatocellular carcinoma (TCGA-LIHC) dataset. FOXK1 and miR-144-3p levels were assessed through quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Targeting of the relationship between miR-144-3p and FOXK1 was verified via a dual-luciferase assay. Pathway enrichment analysis of FOXK1 was performed by Gene Set Enrichment Analysis (GSEA). Cell function assays revealed the glycolytic ability, cell viability, migration, invasion, cell cycle, and apoptosis of HCC cells in each treatment group. Bioinformatics analysis suggested that FOXK1 was upregulated in tissues of HCC patients, while the upstream miR-144-3p was downregulated in tumour tissues. Dual-luciferase assay implied a targeting relationship between miR-144-3p and FOXK1. Cellular experiments implied that silencing FOXK1 repressed HCC cell glycolysis, which in turn inhibited the HCC malignant progression. Rescue assay confirmed that miR-144-3p repressed glycolysis in HCC cells by targeting FOXK1, and then repressed HCC malignant progression. miR-144-3p/FOXK1 axis repressed malignant progression of HCC via affecting the aerobic glycolytic process of HCC cells. miR-144-3p and FOXK1 have the potential to become new therapeutic targets for HCC, which provide new insights for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Glicólise/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
7.
BMC Pulm Med ; 23(1): 513, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114929

RESUMO

OBJECTIVE: The purpose of this study was to explore the expression level of SNHG4 in patients with COPD and its diagnostic value in COPD, to probe the biological function of SNHG4 in COPD at the cellular level, and to reveal the interaction between SNHG4 and miR-144-3p/EZH2 axis. METHODS: The serum levels of SNHG4, miR-144-3p and EZH2 in healthy people and patients with COPD were detected by RT-qPCR. The diagnostic value of SNHG4 in COPD was evaluated by ROC curve. Pearson method was chosen to estimate the correlation between SNHG4 and clinical indicators in patients with COPD. Cigarette smoke extract (CSE) was obtained, and Beas-2B cells were exposed with 2% CSE to establish an inflammatory cell model of COPD in vitro. MTT assay was used to detect cell viability, flow cytometry was used to evaluate cell apoptosis, and ELISA was performed to detect inflammatory cytokines. Dual-luciferase reporting assay was carried out to verify the targeting of lncRNA-miRNA or miRNA-mRNA. RESULTS: (1) The expression of SNHG4 is decreased in patients with COPD, and the expression level in acute exacerbation COPD was lower than that in stable COPD. SNHG4 demonstrated high diagnostic accuracy in distinguishing between stable and acute exacerbation COPD. (2) The expression of SNHG4 was decreased in CSE-induced Beas-2B cells, and overexpression of SNHG4 was beneficial to alleviate CSE-induced apoptosis and inflammation. (3) The expression of miR-144-3p is up-regulated in patients with COPD and CSE-induced Beas-2B cells. MiR-144-3p has a targeting relationship with SNHG4, which is negatively regulated by SNHG4. Overexpression of miR-144-3p could counteract the beneficial effects of increased SNHG4 on CSE-induced cells. (4) The expression of EZH2 is reduced in patients with COPD and CSE-induced Beas-2B cells. Bioinformatics analysis and luciferase reporter gene confirmed that EZH2 is the downstream target gene of miR-144-3p and is negatively regulated by miR-144-3p. CONCLUSION: The expression of SNHG4 decreased in patients with COPD, and it may promote the progression of COPD by inhibiting the viability, promoting apoptosis and inflammatory response of bronchial epithelial cells via regulating the miR-144-3p/EZH2 axis.


Assuntos
Fumar Cigarros , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fumar Cigarros/efeitos adversos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Luciferases , Apoptose , Proteína Potenciadora do Homólogo 2 de Zeste/genética
8.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139235

RESUMO

Type 2 diabetes mellitus (T2D) is a chronic metabolic disease characterized by insulin resistance and ß-cell dysfunction and leading to many micro- and macrovascular complications. In this study we analyzed the circulating miRNA expression profiles in plasma samples from 44 patients with T2D and 22 healthy individuals using next generation sequencing and detected 229 differentially expressed miRNAs. An increased level of miR-5588-5p, miR-125b-2-3p, miR-1284, and a reduced level of miR-496 in T2D patients was verified. We also compared the expression landscapes in the same group of patients depending on body mass index and identified differential expression of miR-144-3p and miR-99a-5p in obese individuals. Identification and functional analysis of putative target genes was performed for miR-5588-5p, miR-125b-2-3p, miR-1284, and miR-496, showing chromatin modifying enzymes and apoptotic genes being among the significantly enriched pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/genética , Projetos Piloto , MicroRNAs/metabolismo , Perfilação da Expressão Gênica
9.
Biochem Biophys Res Commun ; 625: 1-8, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35939870

RESUMO

Chronic obstructive pulmonary disease (COPD) is a serious threat to human health, but an effective targeted therapy for COPD is still lacking at present. During the progression of COPD, the epithelial mesenchymal transition (EMT) ensures the remodeling of pulmonary epithelial cells, and it could not be precisely targeted due to its complex and elusive mechanism. In this study, we determined that the TLR2/MMP9 axis is upregulated in the pulmonary monocytes in cigarette smoke (CS)-induced COPD mice. Using a co-culture system, we identified that the TLR2/MMP9 axis in pulmonary monocytes promotes the EMT of pulmonary epithelial cells. Further, our results confirmed that miR-144-3p inhibits TLR2 expression in monocytes by directly binding to the 3'UTR of TLR2. Finally, we proved that circRERE works as a sponge to antagonize miR-144-3p and promote TLR2 expression in monocytes. Thus, our results conclude that the circRERE/miR-144-3p/TLR2/MMP9 axis in COPD pulmonary monocytes is critical for CS-induced COPD and circRERE may serve as a potential target for COPD.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Metaloproteinase 9 da Matriz , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
10.
Cell Tissue Res ; 388(2): 301-312, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35192037

RESUMO

N6-methyladenosine (m6A) modification plays a crucial role in the progression of osteoporosis (OP). The study aimed to explore the effects of methyltransferase-like 3 (METTL3) in OP. The levels of METTL3, LINC00657, miR-144-3p and BMPR1B were detected using qPCR. Osteogenesis was assessed using alizarin red and alkaline phosphatase (ALP) staining assays. The protein expression of Bglap, Runx2 and Col1a1 was measured by western blot. The targets of LINC00657 and miR-144-3p were screened by bioinformatic analysis. The interaction between miR-144-3p and LINC00657 or BMPR1B was analyzed by dual-luciferase reporter assay and RNA pull-down assay. The results showed that METTL3 was downregulated in OP. METTL3 mediated m6A methylation of LINC00657 to promote the development of osteogenesis. Further study indicated that LINC00657 functioned as a ceRNA to upregulate BMPR1B via sponging miR-144-3p. Additionally, BMPR1B knockdown alleviated the effects of METTL3 on osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Taken together, METTL3 facilitated osteogenic differentiation of BMSCs via the LINC00657/miR-144-3p/BMPR1B axis. Our findings may provide a novel insight of m6A methylation in the development of OP.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo
11.
Cancer Cell Int ; 22(1): 179, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501800

RESUMO

BACKGROUND: Zinc finger and BTB domain-containing 7A (ZBTB7A) is a member of the POK family of transcription factors that plays an oncogenic or tumor-suppressive role in different cancers depending on the type and genetic context of cancer. However, the function and molecular mechanism of ZBTB7A in bladder cancer (BC) remain elusive. METHODS: The role of ZBTB7A in bladder cancer was detected by colony formation, transwell, and tumor formation assays. The expression levels of ZBTB7A, HIC1, and miR-144-3p were analyzed by qRT-PCR and Western blot. Bioinformatics analysis and a dual-luciferase reporter assay were used to assess the effect of ZBTB7A on the promoter activity of HIC1. RESULTS: The present study revealed that knockdown of ZBTB7A suppressed BC cell growth and migration, as indicated by an approximately 50% reduction in the number of colonies and an approximately 70% reduction in the number of migrated cells. Loss of ZBTB7A inhibited tumor growth in vivo, resulting in a 75% decrease in tumor volume and an 80% decrease in tumor weight. Further mechanistic studies revealed that ZBTB7A bound to the hypermethylated in cancer 1 (HIC1) promoter and downregulated HIC1 expression, accelerating the malignant behavior of BC. Increased expression of ZBTB7A in BC tissues was negatively corrected with the expression of HIC1. Moreover, ZBTB7A was a target of miR-144-3p, which decreased ZBTB7A expression in BC. CONCLUSION: Our data demonstrate that ZBTB7A, a targeted gene of miR-144-3p, promoted tumorigenesis of BC through downregulating HIC1 expression.

12.
Cancer Cell Int ; 22(1): 184, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551606

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most prevalent malignancies among women globally. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are associated with BC carcinogenesis. In the current study, we explored the mechanism by which LINC00662 regulates BC. METHODS: Quantitative real-time PCR (qRT-PCR) assessed RNA expressions while western blot for protein levels. Kaplan Meier analysis evaluated overall survival (OS). Cytoplasmic/nuclear fractionation, RNA binding protein immunoprecipitation (RIP) and luciferase reporter assays probed into the underlying molecular mechanism of LINC00662 in BC. Xenograft model was established to explore the influence of LINC00662 on BC progression in vivo. R square graphs were utilized to represent RNA relationships. RESULTS: LINC00662 is overtly overexpressed in BC tissues and cell lines. LINC00662 knockdown hampers cell proliferation, migration, invasion and stemness. LINC00662 expression is negatively correlated with OS of BC patients. LINC00662 up-regulates SOX2 expression by competitively binding to miR-144-3p, thereby modulating BC cell progression. Xenograft experiments verified that LINC00662 promotes BC tumor growth and cell stemness in vivo. CONCLUSION: LINC00662 enhances cell proliferation, migration, invasion and stemness in BC by targeting miR-144-3p/SOX2 axis. The findings in the present study suggested that LINC00662 could be a potential therapeutic target for BC treatment.

13.
J Periodontal Res ; 57(2): 316-323, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34910830

RESUMO

BACKGROUND AND OBJECTIVE: This study aimed to investigate the correlation between chronic periodontitis (CP) and abnormal circular RNA (circRNA) expression and to identify the role of hsa_circ_0003948 in the progression of CP. METHODS: Next-generation sequencing was utilized to investigate abnormal expression of circRNA in gingival tissues from CP patients and healthy control subjects. Bioinformatics and luciferase reporting analyses were used to clarify the interactive relationship among circRNA, miRNA, and mRNA. Periodontal ligament cells (PDLCs) were employed to analyze proliferation and apoptosis after lipopolysaccharide (LPS) treatment using the cell counting kit 8 (CCK8) assay and flow cytometry detection. RESULTS: High-throughput sequencing and RT-qPCR analyses confirmed that hsa_circ_0003948 expression decreased dramatically in gingival samples of CP patients. Overexpression of hsa_circ_0003948 alleviated LPS-induced PDLC injury by regulating NR2F2/PTEN signaling. The miR-144-3p and NR2F2 were determined to be hsa_circ_0003948 downstream targets. NR2F2 downregulation or miR-144-3p overexpression reversed the protective effect of hsa_circ_0003948 in PDLCs after treatment with LPS. Upregulation of NR2F2 reversed the inhibitory effect of miR-144-3p on surviving PDLCs after LPS treatment. CONCLUSION: Overexpression of hsa_circ_0003948 exerts a protective effect in CP via miR-144-3p/NR2F2/PTEN signaling regulation.


Assuntos
Fator II de Transcrição COUP , Periodontite Crônica , MicroRNAs , PTEN Fosfo-Hidrolase , RNA Circular , Apoptose/genética , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Proliferação de Células/genética , Periodontite Crônica/genética , Periodontite Crônica/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , RNA Circular/genética , RNA Circular/metabolismo
14.
J Gastroenterol Hepatol ; 37(5): 919-927, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35332577

RESUMO

BACKGROUND AND AIM: Although rectal neuroendocrine tumor (NET-G1) have potential metastatic capability, even among small tumors, no predictive biomarker for invasion and metastasis has been reported. We analyzed microRNA (miRNA) expression profiles in rectal NET-G1 tissues with and without lymphovascular invasion (LVI). Moreover, we then investigated their target genes to clarify the mechanism of invasion/metastasis in NET-G1. METHODS: miRNA array analysis was performed using seven rectal NET-G1 tissues with LVI and seven without LVI. miRNA expression was confirmed by quantitative real-time PCR. A NET cell line H727 was transfected with miRNA mimic or target gene small interfering RNA, and migration and invasion assays were performed. RESULTS: The expression levels of miR-144-3p and miR-451a were significantly higher in NET-G1 with LVI versus without LVI, as determined by miRNA array analysis and RT-qPCR. A significant correlation was observed between miR-144-3p and miR-451a expression levels, strongly suggesting miR144/451 cluster overexpression in NET-G1 with LVI. Bioinformatic analysis of target genes revealed that miR-144-3p and miR-451a directly interact with PTEN and p19 mRNA, respectively. Immunohistochemistry revealed significantly lower expression of PTEN and p19 in NET-G1 tissues with LVI than in those without LVI. The miR-144-3p and miR-451a mimic significantly increased cell migration/invasion capability, respectively. Knockdown of PTEN and p19 induced significant augmentation of cell invasion and migration capability, respectively. CONCLUSIONS: Our data suggest that overexpression of miR-144/miR-451 cluster promotes LVI via repression of PTEN and p19 in rectal NET-G1 cells. miR-144/451 cluster may be a novel biomarker for predicting invasion/metastasis in rectal NET-G1.


Assuntos
MicroRNAs , Tumores Neuroendócrinos , Neoplasias Retais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Tumores Neuroendócrinos/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Retais/genética
15.
Dig Dis Sci ; 67(11): 5090-5106, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35624329

RESUMO

BACKGROUND: Intestinal ischemia-reperfusion (I/R) injury is a critical pathophysiological process involved in many acute and critical diseases, and it may seriously threaten the lives of patients. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) may be an effective therapeutic approach for I/R injury. AIMS: This study aimed to investigate the role and possible mechanism of BMSC-exos in intestinal I/R injury in vivo and in vitro based on the miR-144-3p and PTEN/Akt/Nrf2 pathways. METHODS: BMSC-exos were isolated from mouse BMSCs by super centrifugation methods. The effects of BMSC-exos on I/R intestinal injury, intestinal cell apoptosis, oxidative stress and the PTEN/Akt/Nrf2 pathway were explored in vivo and in vitro. Furthermore, the relationship between miR-144-3p and PTEN was confirmed by a dual-luciferase reporter assay. The miR-144-3p mimic and inhibitor were used to further clarify the role of miR-144-3p in the mitigation of intestinal I/R by BMSC-exos. RESULTS: BMSC-exos effectively alleviated intestinal pathological injury, reduced intestinal cell apoptosis, relieved oxidative stress and regulated the PTEN/Akt/Nrf2 pathway in vivo and in vitro. In addition, miR-144-3p was significantly reduced in the oxygen and glucose deprivation/reperfusion cell model, and miR-144-3p could directly target PTEN to regulate its expression. Additional studies showed that changing the expression of miR-144-3p in BMSC-exos significantly affected the regulation of intestinal injury, intestinal cell apoptosis, oxidative stress and the PTEN/Akt/Nrf2 pathway in I/R, suggesting that miR-144-3p in BMSC-exos plays an important role in regulating the PTEN/Akt/Nrf2 during intestinal I/R. CONCLUSIONS: BMSC-exos carrying miR-144-3p alleviated intestinal I/R injury by regulating oxidative stress.


Assuntos
Exossomos , MicroRNAs , Estresse Oxidativo , Traumatismo por Reperfusão , Animais , Camundongos , Exossomos/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Células-Tronco Mesenquimais
16.
Drug Dev Res ; 83(6): 1383-1393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35808943

RESUMO

Ovarian cancer is one of the three major gynecological malignancies. It has been reported that Icariside II was able to block the occurrence and development of ovarian cancer. However, the detailed mechanism by which Icariside II regulates the development of ovarian cancer is widely unknown. EdU staining and transwell assays were applied to detect the proliferation, migration, and invasion of ovarian cancer cells. Next, the relationship between miR-144-3p and IGF2R was verified by the dual-luciferase reporter assay. Moreover, in vivo animal model was constructed to verify the effect of Icariside II on the development of ovarian cancer. Icariside II notably inhibited the proliferation, migration, and invasion and induced the apoptosis of ovarian cancer cells. Additionally, Icariside II markedly increased the level of miR-144-3p in ovarian cancer cells. Moreover, IGF2R was targeted by miR-144-3p directly. Icariside II significantly decreased the expression of IGF2R and the phosphorylation level of AKT and mTOR in ovarian cancer cells, which were partially reversed by miR-144-3p inhibitor. Meanwhile, Icariside II remarkably promoted the autophagy of ovarian cancer cells, as confirmed by the increased expression of Beclin-1 and ATG-5 and decreased expression of p62; however, co-treatment with miR-144-3p inhibitor notably decreased autophagy. Furthermore, the result of animal study suggested Icariside II notably inhibited ovarian tumor growth as well. Collectively, Icariside II could suppress the tumorigenesis and development of ovarian cancer by promoting autophagy via miR-144-3p/IGF2R axis. These results may be beneficial for future studies on the use of Icariside II to treat ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Animais , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Flavonoides , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
17.
Mod Rheumatol ; 32(6): 1064-1076, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34850093

RESUMO

OBJECTIVES: Present study aimed to illustrate the role of miR-144-3p in rheumatoid arthritis (RA). METHODS: N1511 chondrocytes were stimulated by interleukin (IL)-1ß to mimic RA injury model in vitro. Rats were subjected to injection of type II collagen to establish an in vivo RA model, and the arthritis index score was calculated. Cell viability was determined by Cell Counting Kit-8. The expression of cartilage extracellular matrix proteins (collagen II and aggrecan) and matrix metalloproteinase protein were determined by quantitative real-time polymerase chain reaction and western blots. Cell apoptosis was measured by flow cytometry. Enzyme-linked immunosorbent assay was applied to test the secretion of pro-inflammatory cytokines (IL-1ß and tumour necrosis factor-α). Tissue injury and apoptosis were detected by haematoxylin-eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling assay staining. Interaction of miR-144-3p and bone morphogenetic protein 2 (BMP2) was verified by dual-luciferase assay. RESULTS: miR-144-3p was dramatically increased in IL-1ß-induced N1511 cells. miR-144-3p depletion elevated cell viability, suppressed apoptosis, pro-inflammatory cytokine releasing, and extracellular matrix loss in IL-1ß-induced N1511 cells. Moreover, miR-144-3p targeted BMP2 to modulate its expression negatively. Activation of phosphatidylinositol 3-kinase (PI3K)/Akt signalling compromised inhibition of BMP2 induced aggravated N1511 cell injury with IL-1ß stimulation. Inhibition of miR-144-3p alleviated cartilage injury and inflammatory in RA rats. CONCLUSION: Collectively, miR-144-3p could aggravate chondrocyte injury inflammatory response in RA via BMP2/PI3K/Akt axis.


Assuntos
Artrite Reumatoide , MicroRNAs , Agrecanas/metabolismo , Animais , Apoptose , Artrite Reumatoide/patologia , Biotina/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Cartilagem/metabolismo , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , DNA Nucleotidilexotransferase/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Interleucina-1beta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
18.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(2): 215-224, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36161300

RESUMO

OBJECTIVE: To investigate the effect of circular RNA pumilio RNA binding family member (circPUM) 1 on radioresistance of cervical cancer cells and its mechanism. METHODS: Cancer tissue and corresponding paricancerous tissue samples were collected from 47 patients with cervical cancer who underwent surgical treatment in the Second Affiliated Hospital of Zhengzhou University from August 2019 to February 2020. The expression levels of circPUM1 and miR-144-3p in cervical cancer tissues and paricancerous tissues were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The Pearson method was used to analyze the correlation between circPUM1 and miR-144-3p expression in cervical cancer tissues. circPUM1 lentiviral short hairpin RNA (sh-circPUM1) and its negative control (sh-NC), miR-144-3p oligonucleotide mimic (miR-144-3p mimic) and its negative control (miR-NC), sh-circPUM1 and miR-144-3p inhibitor (anti-miR), and sh-circPUM1 and anti-miR negative control (anti-miR-NC) were transfected into human cervical carcinoma SiHa cells, respectively, and the cells were irradiated with 0 and 4 Gy irradiation doses. Cell proliferation, colony formation, apoptosis, migration and invasion were detected by cell counting kit (CCK-8 method), plate colony formation assay, flow cytometry and Transwell assay, respectively. The protein expression of cleaved-caspase3 was detected by Western blotting. The targeting relationship between circPUM1 and miR-144-3p was analyzed with Starbase platform. RESULTS: Compared with adjacent tissue, the expression of circPUM1 in cervical cancer tissue was significantly increased ( P<0.05), while the expression of miR-144-3p was decreased ( P<0.05). The circPUM1 was negatively correlated with miR-144-3p ( r=-0.9282, P<0.01). After transfection with sh-circPUM1 or miR-144-3p mimic, the inhibition rate of cell proliferation, the rate of apoptosis and the expression level of cleaved-caspase3 protein increased (all P<0.05), while the number of colonies formed, migrated and invaded cells decreased (all P<0.05). CircPUM1 could targeted to miR-144-3p. After co-transfection of sh-circPUM1 and anti-miR, the inhibition rate of cell proliferation, the rate of apoptosis and the expression level of cleaved-caspase3 protein significantly decreased (all P<0.05), while the number of colonies formed, migrated and invaded cells increased (all P<0.05). CONCLUSION: Silencing circPUM1 may inhibit the proliferation, colony formation, migration, invasion and induce apoptosis of cervical cancer cells through targeting and regulating the expression of miR-144-3p.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Antagomirs/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Interferente Pequeno , Neoplasias do Colo do Útero/genética
19.
J Cell Mol Med ; 25(20): 9767-9783, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547172

RESUMO

Renal ischaemia/reperfusion (I/R) injury may induce kidney damage and dysfunction, in which oxidative stress and apoptosis play important roles. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are reported to be closely related to renal I/R, but the specific molecular mechanism is still unclear. The purpose of this research was to explore the regulatory effect of lncRNA TUG1 on oxidative stress and apoptosis in renal I/R injury. This research revealed that in renal I/R injury and hypoxia/reperfusion (H/R) injury in vitro, the expression level of lncRNA TUG1 was upregulated, and oxidative stress levels and apoptosis levels were negatively correlated with the expression level of lncRNA TUG1. Using bioinformatics databases such as TargetScan and microRNA.org, microRNA-144-3p (miR-144-3p) was predicted to be involved in the association between lncRNA TUG1 and Nrf2. This study confirmed that the level of miR-144-3p was significantly reduced following renal I/R injury and H/R injury in vitro, and miR-144-3p was determined to target Nrf2 and inhibit its expression. In addition, lncRNA TUG1 can reduce the inhibitory effect of miR-144-3p on Nrf2 by sponging miR-144-3p. In summary, our research shows that lncRNA TUG1 regulates oxidative stress and apoptosis during renal I/R injury through the miR-144-3p/Nrf2 axis, which may be a new treatment target for renal I/R injury.


Assuntos
Apoptose/genética , Células Epiteliais/metabolismo , Nefropatias/etiologia , Túbulos Renais/metabolismo , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Traumatismo por Reperfusão/etiologia , Animais , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Interferência de RNA , RNA Longo não Codificante , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
20.
J Cell Physiol ; 236(10): 6988-7000, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33772768

RESUMO

The pro-inflammatory cytokine interleukin 1 beta (IL-1ß) plays a critical role in osteoarthritis (OA) disease pathogenesis. MicroRNA (miRNA) activity is related to inflammation in OA and some miRNAs specifically regulate IL-mediated degradation of cartilage type II collagen. Previous studies have indicated that miR-144-3p is a useful target in the regulation of pro-inflammatory cytokines in different diseases. However, the role of miR-144-3p in OA is unclear. In this study, we observed a negative correlation between miR-144-3p and IL-1ß expression in OA. miR-144-3p mimic transfection of OA synovial fibroblasts downregulated levels of IL-1ß expression, while blocking the MAPK, PI3K/Akt, and NF-κB signaling pathways relating to IL-1ß production, and effectively increased miR-144-3p expression in OASFs. Findings from an anterior cruciate ligament transection rat model revealed that administration of miR-144-3p mimic effectively ameliorated OA progression and reduced the numbers of IL-1ß-positive cells in synovial tissue. This study suggests that miR-144-3p is a useful therapeutic target in OA disease.


Assuntos
Interleucina-1beta/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Bases de Dados Genéticas , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Humanos , Interleucina-1beta/genética , Masculino , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Osteoartrite/prevenção & controle , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Membrana Sinovial/patologia , Sinoviócitos/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa