Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
BMC Cancer ; 24(1): 883, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039505

RESUMO

BACKGROUND: The role of miR-145-5p in non-small cell lung cancer (NSCLC) has been studied, however, the regulation of hBMSCs-derived exosomes (Exo) transmitted miR-145-5p in NSCLC was still unknown. This study aimed to investigate the role of hBMSCs-derived exosomes (Exo) in the progression of NSCLC. METHODS: The Exo was extracted from hBMSCs and added to A549 and H1299 cell culture, followed by the detection of cell proliferation, migration, and invasion. The correlation between the expression of miR-145-5p and SOX9, as well as their binding relationship was determined by correlation analysis, luciferase gene reporter assay and RNA pull-down assays. The in vivo animal model was established to further verify the impact of hBMSCs-Exo. RESULTS: It showed that miR-145-5p was downregulated and SOX9 was upregulated in NSCLC tissues. HBMSCs-derived Exo, and hBMSCs-Exo with overexpression of miR-145-5p could inhibit cell proliferation, migration, and invasion of both A549 and H1299 cells, and prevent against tumor progression in vivo. MiR-145-5p and SOX9 were found to be able to bind to each other, and a negative correlation were observed between the expression of them in NSCLC tissues. Furthermore, inhibition of SOX9 could reversed the suppressed role of miR-145-5p in vitro and in vivo. CONCLUSION: Therefore, HBMSCs-Exo effectively transmitted miR-145-5p, leading to the suppression of malignant development in NSCLC through the regulation of SOX9.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Exossomos , Neoplasias Pulmonares , Células-Tronco Mesenquimais , MicroRNAs , Fatores de Transcrição SOX9 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Exossomos/metabolismo , Exossomos/genética , Camundongos , Proliferação de Células/genética , Células-Tronco Mesenquimais/metabolismo , Movimento Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Masculino , Feminino , Células A549 , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Nanobiotechnology ; 22(1): 329, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858736

RESUMO

BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.


Assuntos
Lentivirus , Lipossomos , MicroRNAs , Células-Tronco Neoplásicas , MicroRNAs/genética , MicroRNAs/metabolismo , Lipossomos/química , Humanos , Animais , Camundongos , Lentivirus/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Camundongos Nus , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Movimento Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt
3.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673886

RESUMO

Aberrant expression of miR-145-5p has been observed in prostate cancer where is has been suggested to play a tumor suppressor role. In other cancers, miR-145-5p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key molecular process for tumor progression. However, the interaction between miR-145-5p and EMT remains to be elucidated in prostate cancer. In this paper the link between miR-145-5p and EMT in prostate cancer was investigated using a combination of in silico and in vitro analyses. miR-145-5p expression was significantly lower in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas prostate adenocarcinoma (TCGA PRAD) data showed significant downregulation of miR-145-5p in prostate cancer, correlating with disease progression. Functional enrichment analysis significantly associated miR-145-5p and its target genes with EMT. MYO6, an EMT-associated gene, was identified and validated as a novel target of miR-145-5p in prostate cancer cells. In vitro manipulation of miR-145-5p levels significantly altered cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Additional TCGA PRAD analysis suggested miR-145-5p tumor expression may be useful predictor of disease recurrence. In summary, this is the first study to report that miR-145-5p may inhibit EMT by targeting MYO6 in prostate cancer cells. The findings suggest miR-145-5p could be a useful diagnostic and prognostic biomarker for prostate cancer.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Cadeias Pesadas de Miosina , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo
4.
J Physiol ; 601(22): 5107-5128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37078283

RESUMO

Long-term abuse of methamphetamine (MA) can cause lung toxicity. Intercellular communication between macrophages and alveolar epithelial cells (AECs) is critical for maintaining lung homeostasis. Microvesicles (MVs) are an important medium of intercellular communication. However, the mechanism of macrophage MVs (MMVs) in MA-induced chronic lung injury remains unclear. This study aimed to investigate if MA can augment the activity of MMVs and if circ_YTHDF2 is a key factor in MMV-mediated macrophage-AEC communication, and to explore the mechanism of MMV-derived circ_YTHDF2 in MA-induced chronic lung injury. MA elevated peak velocity of the pulmonary artery and pulmonary artery accelerate time, reduced the number of alveolar sacs, thickened the alveolar septum, and accelerated the release of MMVs and the uptake of MMVs by AECs. Circ_YTHDF2 was downregulated in lung and MMVs induced by MA. The immune factors in MMVs were increased by si-circ_YTHDF. Circ_YTHDF2 knockdown in MMVs induced inflammation and remodelling in the internalised AECs by MMVs, which was reversed by circ_YTHDF2 overexpression in MMVs. Circ_YTHDF2 bound specifically to and sponged miRNA-145-5p. Runt-related transcription factor 3 (RUNX3) was identified as potential target of miR-145-5p. RUNX3 targeted zinc finger E-box-binding homeobox 1 (ZEB1)-related inflammation and EMT of AECs. In vivo, circ_YTHDF2 overexpression-MMVs attenuated MA-induced lung inflammation and remodelling by the circ_YTHDF2-miRNA-145-5p-RUNX3 axis. Therefore, MA abuse can induce pulmonary dysfunction and alveolus injury. The immunoactivity of MMVs is regulated by circ_YTHDF2. Circ_YTHDF2 in MMVs is the key to communication between macrophages and AECs. Circ_YTHDF2 sponges miR-145-5p targeting RUNX3 to participate in ZEB1-related inflammation and remodelling of AECs. MMV-derived circ_YTHDF2 would be an important therapeutic target for MA-induced chronic lung injury. KEY POINTS: Methamphetamine (MA) abuse induces pulmonary dysfunction and alveoli injury. The immunoactivity of macrophage microvesicles (MMVs) is regulated by circ_YTHDF2. Circ_YTHDF2 in MMVs is the key to MMV-mediated intercellular communication between macrophages and alveolar epithelial cells. Circ_YTHDF2 sponges miR-145-5p targeting runt-related transcription factor 3 (RUNX3) to participate in zinc finger E-box-binding homeobox 1 (ZEB1)-related inflammation and remodelling. MMV-derived circ_YTHDF2 would be an important therapeutic target for MA-induced chronic lung injury.


Assuntos
Lesão Pulmonar , Metanfetamina , MicroRNAs , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Metanfetamina/toxicidade , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Fator 3 de Transcrição/metabolismo , Inflamação/metabolismo , Macrófagos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Apoptose , Proteínas de Ligação a RNA
5.
J Cell Biochem ; 124(9): 1324-1345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475541

RESUMO

Upper tract urothelial carcinoma (UTUC), including renal, pelvic, and ureteral carcinoma, has a high incidence rate in Taiwan, which is different from that in Western countries. Therefore, it is imperative to elucidate the mechanisms underlying UTUC growth and metastasis. To explore the function of miR-145-5p in UTUC, we transfected the BFTC909 cell line with miR-145-5p mimics and analyzed the differences in protein levels by performing two-dimensional polyacrylamide gel electrophoresis. Real-time polymerase chain reaction and Western blot analysis were used to analyze 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inositol monophosphate cyclohydrolase (ATIC) messenger RNA and protein levels. A dual-luciferase assay was performed to identify the target of miR-145-5p in ATIC. The effects of miR-145-5p and ATIC expression by cell transfection on cell proliferation, migration, and invasion were also assessed. miR-145-5p downregulated ATIC protein expression. High ATIC expression is associated with tumor stage, metastasis, recurrence, and a poor prognosis in patients with UTUC. Cell function assays revealed that ATIC knockdown inhibited the proliferation, migration, and invasive abilities of UTUC cells. In contrast, miR-145-5p affected the proliferation, migration, and invasive abilities of UTUC cells by directly targeting the 3'-untranslated regions of ATIC. Furthermore, we used RNA sequencing and Ingenuity Pathway Analysis to identify possible downstream genes regulated by ATIC and found that miR-145-5p regulated the protein levels of fibronectin 1, Slug, cyclin A2, cyclin B1, P57, and interferon-induced transmembrane 1 via ATIC. ATIC may be a valuable predictor of prognosis and a potential therapeutic target for UTUC.


Assuntos
Carcinoma de Células de Transição , Hidroximetil e Formil Transferases , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , Carcinoma de Células de Transição/genética , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/genética , Hidroximetil e Formil Transferases/genética , Proliferação de Células/genética , Ribonucleotídeos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
6.
FASEB J ; 36(7): e22370, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635726

RESUMO

MicroRNAs (miRNAs) are evolutionarily conserved endogenous small non-coding RNAs that play critical roles in skeletal muscle development. In this study, we identified putative miRNAs that were differentially expressed in the longissimus dorsi muscle between fetus (75 days of pregnancy) and lamb (1 day of age). We detected 1208 miRNAs, 313 of which were differentially expressed. In particular, we found that miR-145-5p was differentially and highly expressed in lamb skeletal muscle. In addition, our results demonstrated that overexpression of miR-145-5p inhibited the differentiation and apoptosis of goat primary myoblasts (GPMs), whereas knockdown of miR-145-5p had the opposite effect. The coding domain sequence (CDS) of ubiquitin-specific peptidase 13 (USP13) was predicted and validated as a target of miR-145-5p. We also demonstrated that the influence as a key regulator of GPMs differentiation is primarily mediated by targeting and inhibiting USP13. Taken together, these results revealed a novel pathway in skeletal muscle development in which miR-145-5p targets CDS region of USP13 to regulate differentiation and apoptosis of GPMs.


Assuntos
Cabras , MicroRNAs , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Cabras/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mioblastos/metabolismo , Ovinos , Proteases Específicas de Ubiquitina/metabolismo
7.
Reprod Biomed Online ; 46(2): 234-243, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567149

RESUMO

RESEARCH QUESTION: What is the specific mechanism of umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-exos) in regulating endometrial repair and regeneration? DESIGN: In this study, UCMSC-exos were harvested by differential ultracentrifugation from umbilical cord mesenchymal stem cell culture supernatant and identified with western blotting, transmission electron microscopy and nanoparticle tracking analysis. Transforming growth factor-ß1 (TGFß1) at different concentrations was used to construct the intrauterine adhesions cell model. The fibrotic markers were assessed by quantitative reverse transcription-polymerase chain reaction and western blotting. The effects of miR-145-5p over-expression on endometrial fibrosis were assessed. Dual luciferase assay was performed to verify the relationship between miR-145-5p and zinc finger E-box binding homeobox 2 (ZEB2). RESULTS: The isolated UCMSC-exos had a typical cup-shaped morphology, expressed the specific exosomal markers Alix, CD63 and TSG101, and were approximately 50-150 nm in diameter. TGFß1 at 10 ng/ml significantly promoted endometrial fibrosis, which was reversed by 20 µg/ml UCMSC-exos. Exosomal miR-145-5p ameliorated TGFß1-induced endometrial fibrosis. ZEB2 was inversely regulated by exosomal miR-145-5p as a direct target. CONCLUSIONS: UCMSC-exos might reverse endometrial stromal cell fibrosis by regulating the miR-145-5p/ZEB2 axis, representing a potential novel strategy to promote endometrial repair.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Doenças Uterinas , Humanos , Feminino , MicroRNAs/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doenças Uterinas/genética , Aderências Teciduais , Fibrose , Cordão Umbilical/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
8.
Mol Cell Probes ; 71: 101920, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442529

RESUMO

BACKGROUND: Aberrant expression of circRNAs is involved in the progression of hepatocellular carcinoma (HCC). This study aimed at screening the pro-tumorigenic circular RNAs (circRNAs) in HCC and the mechanisms of circCPSF6 expression influencing HCC characteristics. METHOD: circCPSF6 was identified in HCC tissues using high-throughput sequencing data, and its expression was verified in both HCC tissues and cell lines using quantitative real-time PCR (qRT-PCR). CCK-8 and Transwell assays were used to evaluate the effects of circCPSF6 on HCC proliferation and migration. A xenograft mouse model was used to investigate the effects of circCPSF6 on HCC progression in vivo, and the significance of circCPSF6 in HCC was verified both in vivo and in vitro. circCPSF6-associated miRNAs and mRNAs were identified using bioinformatic analyses. Luciferase reporter, RNA pull-down, Fluorescence in situ hybridization, and RNA immunoprecipitation assays were performed to elucidate the circCPSF6 regulatory axis in HCC. RESULT: CircCPSF6 expression was increased in HCC cell lines and tissues, and the expression of its parental mRNA was positively correlated with tumor severity and negatively correlated with survival. Mechanistic analyses of HCC cell lines showed that tumorigenesis was inhibited by circCPSF6 knockdown and promoted by its overexpression. Functional analyses revealed that circCPSF6 mediated HCC development by sponging miR-145-5p as a competing endogenous RNA. Furthermore, this sponging upregulated the miR-145-5p target gene MAP4K4, a classical pro-tumorigenic gene. CONCLUSION: Our findings reveal a regulatory network that includes the circCPSF6-miR-145-5p-MAP4K4 axis. Elements of this axis are potential HCC biomarkers, as well as targets for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Circular/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1892-1901, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37997376

RESUMO

Krüppel-like zinc-finger transcription factor 5 (KLF5) is a vital regulator of breast cancer (BC) onset and progression. The mechanism by which KLF5 regulates BC is still not clearly known. In this study, bioinformatics analysis shows that BC-affected individuals with elevated KLF5 expression levels have poor clinical outcomes. We further verify that miR-145-5p regulated KLF5 expression to promote cell apoptosis and inhibit cell proliferation in BC via dual-luciferase reporter assay, western blot analysis, qRT-PCR, CCK-8 assay and cell apoptosis assay. In addition, based on bioinformatics analysis, the binding of ENST00000422059 with miR-145-5p is confirmed by dual-luciferase reporter assay. Subsequently, FISH, western blot analysis, qRT-PCR, CCK-8 and cell apoptosis assays verified that ENST00000422059 increases KLF5 protein expression by sponging miRNA to promote cell proliferation and inhibit cell apoptosis. Finally, ENST00000422059 is found to accelerate tumor progression by regulating the miR-145-5p/KLF5 axis in vivo. In conclusion, this study suggests that ENST00000422059 upregulates KLF5 by sponging miR-145-5p to promote BC progression.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/metabolismo , Sincalida/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Apoptose/genética , Proliferação de Células/genética , Luciferases/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
10.
Clin Exp Hypertens ; 45(1): 2284658, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38010958

RESUMO

Long non-coding RNAs (LncRNAs) have been found to play a regulatory role in the pathophysiology of vascular remodeling-associated illnesses through the lncRNA-microRNA (miRNA) regulation axis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is thought to be involved in proliferation, migration, apoptosis, and calcification of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the regulatory role of MALAT1 on vascular remodeling in hypertension. Our data indicate that the expression of MALAT1 is significantly upregulated in hypertensive aortic smooth muscle. Knockdown of MALAT1 inhibited the proliferation, migration, and phenotypic transition of VSMCs induced by Ang II. Bioinformatics analysis was used to predict the complementary binding of miR-145-5p to the 3'-untranslated region of MALAT1. Besides, the expressions of MALAT1 and miR-145-5p were negatively correlated, while luciferase reporter assays and RNA immunoprecipitation assay validated the interaction between miR-145-5p and MALAT1. The proliferation, migration and phenotypic transformation of VSMCs induced by overexpression of MALAT1 were reversed in the presence of miR-145-5p. Furthermore, we verified that miR-145-5p could directly target and bind to hexokinase 2 (HK2) mRNA, and that HK2 expression was negatively correlated with miR-145-5p in VSMCs. Knockdown of HK2 significantly inhibited the effects of overexpression of MALAT1 on Ang II-induced VSMCs proliferation, migration and phenotypic transformation. Taken together, the MALAT1/miR-145-5p/HK2 axis may play a critical regulatory role in the vascular remodeling of VSMCs in hypertension.


Assuntos
Hipertensão , MicroRNAs , RNA Longo não Codificante , Apoptose/genética , Proliferação de Células/genética , Hexoquinase/metabolismo , Hipertensão/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Remodelação Vascular/genética
11.
Biochem Genet ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950842

RESUMO

Diabetic foot ulcer (DFU) is one major, common and serious chronic complication of diabetes mellitus, which is characterized by high incidence, high risk, high burden, and high treatment difficulty and is a leading cause of disability and death in patients with diabetes. Long-term hyperglycemia can result in cellular dysfunction of fibroblasts, which play pivotal roles in wound healing. MicroRNAs (miRNAs) were reported to mediate the pathological processes of multiple diseases, including diabetic wound healing. This research aimed to investigate the functional role of miR-145-5p in high-glucose (HG)-exposed fibroblasts and in DFU mouse models. Human foreskin fibroblast cells (HFF-1) were stimulated by HG to induce cell injury. MiR-145-5p level in HG-stimulated HFF-1 cells was detected via RT-qPCR. The binding between miR-145-5p and PDGFD was validated by Luciferase reporter assay. The effects of the miR-145-5p/PDGFD axis on the viability, migration, and apoptosis of HG-exposed HFF-1 cells were determined by CCK-8, wound healing, and flow cytometry assays. DFU mouse models were subcutaneously injected at the wound edges with miR-145-5p inhibitor/mimics. Images of the wounds were captured on day 0 and 8 post-injection, and wound samples were collected after mice were sacrificed for histological analysis by H&E staining. HG decreased cell viability and increased miR-145-5p expression in HFF-1 cells in a dose- and time-dependent manner. MiR-145-5p downregulation promoted cell viability and migration and inhibited cell apoptosis of HG-stimulated HFF-1 cells, while miR-145-5p overexpression exerted an opposite effect on cell viability, migration, and apoptosis. PDGFD was a direct target gene of miR-145-5p, whose silencing reversed the influence of miR-145-5p downregulation on HG-induced cellular dysfunction of HFF-1 cells. Additionally, downregulating miR-145-5p facilitated while overexpressing miR-145-5p inhibited wound healing in DFU mouse models. MiR-145-5p level was negatively associated with PDGFD level in wound tissue samples of DFU mouse models. MiR-145-5p inhibition improves wound healing in DFU through upregulating PDGFD expression.

12.
Ren Fail ; 45(1): 2173950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36794657

RESUMO

The renal interstitial fibrosis contributes to the progression and deterioration of diabetic nephropathy (DN). Long noncoding RNA taurine-up-regulated gene 1 (TUG1) in kidneys may be down-regulated by hyperglycemia. We aim to explore its role in tubular fibrosis caused by high glucose and the possible target genes of TUG1. In this study, a streptozocin-induced accelerated DN mouse model and a high glucose-stimulated HK-2 cells model was established to evaluate TUG1 expression. Potential targets of TUG1 were analyzed by online tools and confirmed by luciferase assay. A rescue experiment and gene silencing assay were used to investigate whether TUG1 plays its regulation role via miR-145-5p/dual-specificity phosphatase 6 (DUSP6) in HK2 cells. The effects of TUG1 on inflammation and fibrosis in high glucose treated tubular cells were evaluated by in vitro study, as well as in vivo DN mice model through AAV-TUG1 delivery. Results showed TUG1was downregulated in HK2 cells incubated with high glucose while miR-145-5p was upregulated. Overexpression of TUG1 alleviated renal injury by suppressing inflammation and fibrosis in vivo. Overexpression of TUG1 inhibited HK-2 cell fibrosis and relieved the inflammation. A mechanism study demonstrated that TUG1 directly sponged to miR-145-5p, and DUSP6 was identified as a target downstream of miR-145-5p. In addition, miR-145-5 overexpression and DUSP6 inhibition countervailed the impacts of TUG1. Our findings revealed that TUG1 overexpression alleviates kidney injury in DN mice and decreases the inflammatory response and fibrosis of high glucose-stimulated HK-2 cells via miR-145-5p/DUSP6 axis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Fosfatase 6 de Especificidade Dupla , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fosfatase 6 de Especificidade Dupla/metabolismo , Fibrose , Glucose , Inflamação , MicroRNAs/genética , MicroRNAs/metabolismo
13.
Pediatr Surg Int ; 40(1): 25, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127107

RESUMO

BACKGROUND: Hirschsprung's disease (HSCR) is a congenital disorder resulting from abnormal development of the enteric nervous system (ENS). Given the complexity of its pathogenesis, it is important to investigate the role of epigenetic inheritance in its development. As Circ-MTCL1 is abundant in brain tissue and colon tissue, whether it has a significant part in the development of ENS is worth exploring. This study clarifies its role in HSCR and identifies the specific molecular mechanisms involved. METHODS: Diseased and dilated segment colon tissues diagnosed as HSCR were collected for the assessment of gene expression levels using RT-PCR. EdU and CCK-8 assays were adopted to evaluate cell proliferation, and Transwell assay was adopted to assess cell migration. The interaction between Circ-MTCL1, miR-145-5p and SMAD3 was confirmed by dual luciferase reporter gene analysis, RT-PCR and Western blotting. RESULTS: Circ-MTCL1 was down-regulated in the aganglionic colon tissues. The decreased expression of Circ-MTCL1 associated with a reduction in cell migration and proliferation. Bioinformatics analysis and cellular experiments confirmed its role might have been associated with the inhibition of miR-145-5p. MiR-145-5p was up-regulated in HSCR diseased segment colon tissues, exhibiting a negative correlation with Circ-MTCL1. Overexpression of miR-145-5p reversed the inhibition of cell migration and proliferation associated with Circ-MTCL1 down-regulation. The expression of SMAD3 was inhibited by miR-145-5p. The overexpression of SMAD3 eliminated the miR-145-5p-associated inhibition of cell migration and proliferation. Overexpression of miR-145-5p reversed the inhibitory effects of Circ-MTCL1 down-regulation-associated inhibition of cell migration and proliferation, while suppressing SMAD3 expression. Conversely, overexpression of SMAD3 counteracted the miR-145-5p-associated inhibition of cell migration and proliferation. CONCLUSIONS: Circ-MTCL1 may function as a miR-145-5p sponge, regulating the expression of SMAD3 and influencing cell migration and proliferation, thus participating in the development of HSCR.


Assuntos
Doença de Hirschsprung , MicroRNAs , Humanos , Doença de Hirschsprung/genética , RNA Circular/genética , Proliferação de Células/genética , Movimento Celular/genética , MicroRNAs/genética , Proteína Smad3/genética , Proteínas Associadas aos Microtúbulos
14.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240449

RESUMO

Prostate cancer (PCa) is one of the most common malignancies among men worldwide. Inevitably, all advanced PCa patients develop metastatic castration-resistant prostate cancer (mCRPC), an aggressive phase of the disease. Treating mCRPC is challenging, and prognostic tools are needed for disease management. MicroRNA (miRNA) deregulation has been reported in PCa, constituting potential non-invasive prognostic biomarkers. As such, this study aimed to evaluate the prognostic potential of nine miRNAs in the liquid biopsies (plasma) of mCRPC patients treated with second-generation androgen receptor axis-targeted (ARAT) agents, abiraterone acetate (AbA) and enzalutamide (ENZ). Low expression levels of miR-16-5p and miR-145-5p in mCRPC patients treated with AbA were significantly associated with lower progression-free survival (PFS). The two miRNAs were the only predictors of the risk of disease progression in AbA-stratified analyses. Low miR-20a-5p levels in mCRPC patients with Gleason scores of <8 were associated with worse overall survival (OS). The transcript seems to predict the risk of death regardless of the ARAT agent. According to the in silico analyses, miR-16-5p, miR-145-5p, and miR-20a-5p seem to be implicated in several processes, namely, cell cycle, proliferation, migration, survival, metabolism, and angiogenesis, suggesting an epigenetic mechanism related to treatment outcome. These miRNAs may represent attractive prognostic tools to be used in mCRPC management, as well as a step further in the identification of new potential therapeutic targets, to use in combination with ARAT for an improved treatment outcome. Despite the promising results, real-world validation is necessary.


Assuntos
MicroRNAs , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Estudos de Coortes , Estudos Retrospectivos , Acetato de Abiraterona/uso terapêutico , Resultado do Tratamento , Nitrilas/uso terapêutico
15.
Zhonghua Zhong Liu Za Zhi ; 45(10): 879-891, 2023 Oct 23.
Artigo em Chinês | MEDLINE | ID: mdl-37875424

RESUMO

Objective: To investigate the effect of hsa_circ_0000392 (circ_0000392) on the radiosensitivity of cervical cancer cells and explore its potential mechanism. Methods: Cervical cancer tissues and adjacent normal tissues of 42 patients with cervical cancer who were confirmed pathologically for the first time in Huaihe Hospital of Henan University from 2016 to 2019 were collected. According to the patients' response to radiotherapy, the cancer tissues were divided into radio-sensitive tissues and radio-resistant tissues. The expressions of circ_0000392, miR-145-5p, and CRKL in radiation-sensitive, radiation-resistant cervical cancer tissues and Hela, SiHa cells were detected by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. SiRNA circ_0000392, miR-145-5p mimic, miR-145-5p inhibitor, pcDNA 3.1-CRKL and its negative control were transfected into HeLa and Siha cells, respectively. After radiation induction, the survival fraction of cells was detected by clone formation assay, apoptosis was detected by flow cytometry, and the expressions of apoptosis-related proteins Bax and Bcl-2 and ERK pathway protein p-ERK1/2 and ERK1/2 were detected by western blot. The targeting relationship between circ_0000392, miR-145-5p and CRKL was verified by dual luciferase reporter gene assay. The effect of circ_0000392 on radiotherapy sensitivity of cervical cancer in vivo was observed in the tumor formation experiment in nude mice. Results: circ_0000392 and CRKL were upregulated in radiation-resistant tissues and cancer cells of cervical cancer, while miR-145-5p was downregulated. The clone formation numbers of Hela and SiHa cells in si-circ_0000392#1+ 6 Gy group were (78.67±10.97) and (71.00±9.54), respectively, which were lower than those in si-Ctrl+ 6 Gy group [(176.00±22.27) and (158.33±17.56), respectively]. The apoptosis rates were (41.55±3.40)% and (31.41±3.29)%, respectively, which were higher than those in si-Ctrl+ 6 Gy group [(15.91±1.37)% and (13.70±1.89)%, P<0.05]. The protein expression of Bax was higher than that of si-Ctrl+ 6 Gy group, and the protein expressions of Bcl2 was lower than those of si-Ctrl+ 6 Gy group. The clone formation numbers of Hela and SiHa cells in si-circ_0000392#1+ miR-145-5p inhibitor+ 6 Gy group were (171.33±25.01) and (137.00±21.66), higher than those in si-circ_0000392#1+ inhibitor NC+ 6 Gy group [(84.67±17.79) vs (71.00±11.00), P<0.05]. The apoptosis rates were (17.41±2.58) % and (15.96±1.25) %, lower than those of si-circ_0000392 #1+ inhibitor NC+ 6 Gy [(40.29±2.92)% and (30.82±2.34)%, respectively, P<0.05]. The expression of Bax protein was lower than that of si-circ_0000392#1+ inhibitor NC+ 6 Gy group, and the expressions of Bcl2 protein were higher than those of si-circ_0000392#1+ inhibitor NC+ 6 Gy group. Circ_0000392 can target miR-145-5p, and CRKL is the downstream target gene of miR-145-5p. The clone formation numbers of Hela and SiHa cells in miR-145-5p mimic+ 6 Gy group were (74.33±10.02) and (66.00±12.17), respectively, which were lower than those of mimic NC+ 6 Gy group [(197.67±17.21) vs (157.67±11.59), respectively, P<0.05]. The apoptosis rates were (45.58±2.16)% and (32.10±3.55)%, higher than those of mimic NC+ 6 Gy group [(15.85±2.45)% and (13.99±1.69)%, respectively, P<0.05]. The expression of Bax protein was higher than that of the mimic NC+ 6 Gy mimic group, and the expression of Bcl2 protein was lower than that of the mimic NC+ 6 Gy group. The clone formation numbers of Hela and SiHa cells in miR-145-5p mimic+ pcDNA-CRKL+ 6 Gy group were (158.00±15.88) and (122.33±13.65), respectively, which were higher than those of miR-145-5p mimic+ pcDNA+ 6 Gy group [(71.33±8.02) vs (65.67±12.22), P<0.05]. The apoptosis rates were (19.50±3.45)% and (17.04±0.94)%, respectively, which were lower than those of miR-145-5p mimic+ pcDNA+ 6 Gy group [(44.33±2.36)% and (32.05±2.76)%, respectively, P<0.05]. The expression of Bax protein was lower than that of miR-145-5p mimic+ pcDNA group+ 6 Gy group, and the expression of Bcl2 protein was higher than that of miR-145-5p mimic+ pcDNA+ 6 Gy group. Sh-circ_0000392 group had smaller tumor volume and decreased tumor weight (P<0.05). The relative mRNA expression levels of circ_0000392, miR-145-5p and CRKL and the relative protein expression levels of CRKL, Bcl-2 and p-ERK1/2 were decreased, while the relative expression level of Bax protein was increased (P<0.05). Conclusion: Circ_0000392 could enhance the radiosensitivity of cervical cancer cells, and its mechanism may be related to the regulation of CRKL/ERK signaling pathway by targeting miR-145-5p, which provides a new reference for enhancing the radiosensitivity of cervical cancer cells.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Animais , Camundongos , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Proteína X Associada a bcl-2/genética , Camundongos Nus , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral
16.
Funct Integr Genomics ; 22(4): 1-13, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35474406

RESUMO

New evidence suggests that abnormal expression of circular RNA (circRNA) is associated with the development of human cancers. This study aims to reveal circMYOF roles in the malignant phenotype of laryngeal squamous cell carcinoma (LSCC). The expression of circMYOF, microRNA (miR)-145-5p, and orthodenticle homeobox 1 (OTX1) was detected by quantitative real-time PCR. Cell proliferation, migration, invasion, and apoptosis were determined using colony formation assay and EdU assay, wound healing assay, transwell assay, and flow cytometry, respectively. Protein expression was examined by western blot analysis. Cell glycolysis was assessed by detecting glucose consumption and lactate production. Mice xenograft models were constructed to evaluate the regulation of circMYOF on LSCC tumorigenesis. The regulatory relationships among circMYOF, miR-145-5p, and OTX1 were identified using dual-luciferase reporter assay and RIP assay. Serum exosomes were isolated to confirm the existence of circMYOF in LSCC patients. CircMYOF was upregulated in LSCC tissues and cells, and its knockdown suppressed LSCC cell growth, metastasis, and glycolysis, as well as inhibited LSCC tumor growth. MiR-145-5p had decreased expression in LSCC, and it could be sponged by circMYOF. The inhibition effect of circMYOF lentivirus short hairpin RNA (sh-circMYOF) on LSCC progression was restored by the inhibitor of miR-145-5p (in-miR-145-5p). Also, OTX1 was targeted by miR-145-5p and was positively regulated by circMYOF. MiR-145-5p could repress LSCC progression, and OTX1 overexpression also eliminated this effect. In addition, we found that circMYOF was significantly overexpressed in the serum exosomes of LSCC patients. Our data revealed that circMYOF contributed to LSCC progression by promoting cell growth, metastasis, and glycolysis through miR-145-5p/OTX1 axis.


Assuntos
Neoplasias Laríngeas , MicroRNAs , Fatores de Transcrição Otx , RNA Circular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , Neoplasias Laríngeas/genética , Camundongos , MicroRNAs/genética , Fatores de Transcrição Otx/genética , RNA Circular/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
17.
Microvasc Res ; 139: 104236, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464666

RESUMO

BACKGROUND: Atherosclerosis (AS) is a lipid-driven inflammatory disease of the arterial intima. Evidence is growing that dysregulation of lncRNAs is implicated in the pathogenesis of AS. In this research, the role of lncRNA KCNQ1OT1 in AS was investigated. METHODS: ApoE-/- mice were fed on a high fat diet to establish mouse models of AS. Macrophages (THP-1) were treated with oxidized low-density lipoprotein (ox-LDL) to establish cell models of AS. Atherosclerotic lesions of AS mice were determined by performing Oil red O staining. Lipid metabolic disorders and inflammatory were detected using specific assay kits. KCNQ1OT1 and miR-145-5p expression was measured using RT-qPCR. Levels of PPARα and CPT1 were measured using western blot. RESULTS: KCNQ1OT1 expression was upregulated and miR-145-5p was downregulated in atherosclerotic plaques of AS mice and ox-LDL-treated THP-1 cells. Lipid metabolic disorders and inflammation in vivo and in vitro were attenuated by either KCNQ1OT1 knockdown or miR-145-5p overexpression. Additionally, KCNQ1OT1 acted as a molecular sponge of miR-145-5p and downregulated miR-145-5p expression. Furthermore, silencing miR-145-5p abolished the effect of KCNQ1OT1 knockdown. CONCLUSION: Silencing KCNQ1OT1 attenuates AS progression by sponging miR-145-5p.


Assuntos
Aorta , Doenças da Aorta , Aterosclerose , Inflamação , Macrófagos , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Masculino , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Lipoproteínas LDL/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Interferência de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Células THP-1
18.
FASEB J ; 35(6): e21660, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34010469

RESUMO

In the mammalian testis, two distinct populations of Sertoli cells (SCs), the immature SCs (ISCs) and adult SCs (ASCs), play significant roles in regulating the development and function of Leydig cells. However, the effect of different SC types on the function of Leydig cells is poorly understood. Here, our study showed that miR-145-5p expression was significantly different in SCs at different stages, with the highest expression observed in ISCs. Exosomes mediate the transfer of miR-145-5p from ISCs to Leydig cells. Overexpression of miR-145-5p in Leydig cells significantly downregulated steroidogenic gene expression and inhibited testosterone synthesis. Additionally, miR-145-5p functioned by directly targeted steroidogenic factor-1 (Sf-1) and downregulated the expression of SF-1, which further downregulated the expression of steroidogenic genes, induced accumulation of lipid droplets, and eventually suppressed testosterone production. These findings demonstrate that SC-derived miR-145-5p plays a significant role in regulating the functions of Leydig cells and may therefore serve as a diagnostic biomarker for male hypogonadism developmental abnormalities during puberty.


Assuntos
Exossomos/metabolismo , Células Intersticiais do Testículo/metabolismo , MicroRNAs/genética , Células de Sertoli/metabolismo , Fator Esteroidogênico 1/antagonistas & inibidores , Esteroides/biossíntese , Testículo/metabolismo , Animais , Exossomos/genética , Células Intersticiais do Testículo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células de Sertoli/patologia , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Testículo/patologia
19.
Exp Mol Pathol ; 128: 104819, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914612

RESUMO

INTRODUCTION: Colorectal cancer (CRC) has become one of the most common cancers in recent years. Given the importance that non-coding RNAs have recently acquired in various diseases including cancers, we decided to design this study to evaluate the expression levels of circ0001955/miR-145-5p/ONECUT2 axis in CRC. METHODS: After bioinformatics analysis of GEO datasets related to CRC, a putative circ0001955/ miR-145-5p/ ONECUT2 pathway was assumed. Then, the expression levels of these genes were measured in 50 CRC samples and adjacent tissues by qRT- PCR. Also, correlation coefficients, receiver operating characteristic (ROC) curves, and correlation between circ0001955 levels with clinicopathological parameters of patients were analyzed. RESULTS: Circ0001955 and ONECUT2 were considerably up-regulated, while the expression level of miR-145-5p was decreased in CRC samples compared with adjacent tissues (p < 0.05). Moreover, statistically significant correlations were observed between expression levels of circ0001955, miR-145-5p, and ONECUT2. We did not find any significant correlation between circ0001955 expression and clinicopathological parameters. CONCLUSION: Our study showed that circ0001955 is dysregulated in CRC. This finding can open a new window for researchers for a better understanding of the potential pathways involved in CRC pathogenesis and, consequently, to find new treatment pathways.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética
20.
J Oral Pathol Med ; 51(7): 630-637, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35778962

RESUMO

BACKGROUND: We aimed to demonstrate the effects circ_0058063 exerted on oral squamous cell carcinoma (OSCC) and its downstream mechanism associated with miR-145-5p and SERPINE1. METHODS: The relevant contents of miR-145-5p, circ 0058063, and SERPINE1 mRNAs in OSCC were evaluated using quantitative reverse transcription polymerase chain reaction. Functional experiments including CCK-8, Transwell, Western blot, and in vivo experiment were implemented to investigate the biological impacts on OSCC cells. Using dual-luciferase reporter, RIP, and RNA pull-down assays, the direct binding relationship between miR-145-5p, circ 0058063, and SERPINE1, SMAD3, CYR61, and IGF1R mRNAs was verified. RESULTS: In OSCC, Circ 0058063 was significantly overexpressed. Knockdown of circ_0058063 suppressed OSCC cell migration and proliferation, but enhanced cell apoptosis. Functionally and mechanistically, circ_0058063 could specifically bind with miR-145-5p and thus upregulated expression of downstream target SERPINE1, which together contributed to the progression of OSCC. CONCLUSION: Circ_0058063 could promote the malignant behavior of OSCC by upregulating SERPINE1 through sponging miR-145-5p.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Inibidor 1 de Ativador de Plasminogênio , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa