Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Apoptosis ; 29(1-2): 191-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37945815

RESUMO

During cancer cell invasion, integrin undergoes constant endo/exocytic trafficking. It has been found that the recycling ability of integrin ß1 through Rab11-controlled long loop pathways is directly associated with cancer invasion. Previous studies showed that gain-of-function mutant p53 regulates the Rab-coupling protein [RCP]-mediated integrin ß1 recycling by inactivating tumor suppressor TAp63. So, we were interested to investigate the involvement of miR-205 in this process. In the current study first, we evaluated that the lower expression of miR-205 in MDA-MB-231 cell line is associated with high motility and invasiveness. Further investigation corroborated that miR-205 directly targets RCP resulting in attenuated RCP-mediated integrin ß1 recycling. Overexpression of TAp63 validates our in vitro findings. To appraise the anti-metastatic role of miR-205, we developed two in vivo experimental models- xenograft-chick embryo and xenograft-immunosuppressed BALB/c mice. Our in vivo results support the negative effect of miR-205 on metastasis. Therefore, these findings advocate the tumor suppressor activity of miR-205 in breast cancer cells and suggest that in the future development of miR-205-targeting RNAi therapeutics could be a smart alternative approach to prevent the metastatic fate of the disease.


Assuntos
Neoplasias da Mama , MicroRNAs , Animais , Embrião de Galinha , Feminino , Humanos , Camundongos , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Integrina beta1/genética , Integrina beta1/metabolismo , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica
2.
Biol Reprod ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101465

RESUMO

Interleukin-32 is a species-specific cytokine that plays an important role in inflammation, cancer, and other diseases; however, its role in reproductive and pregnancy-related diseases remains unknown. This study aimed to investigate the role of interleukin-32 in reproductive and pregnancy-related diseases. Placental tissues from patients with pregnancy-induced hypertension, healthy pregnant women, and trophoblast lines were analysed. Interleukin-32 expression was quantified via polymerase chain reaction and immunohistochemistry, and functional assays were performed after interleukin-32 modulation. Interleukin-32 was identified only in placental mammals, such as Carnivora, Cetartiodactyla, Chiroptera, Dermoptera, Lagomorpha, Perissodactyla, and Primates via bioinformatics. Immunohistochemistry and polymerase chain reaction revealed that interleukin-32 was highly expressed in human placental villi, poorly expressed in decidua and endometrial tissues, and was not detected in mouse tissues. Second, interleukin-32 upregulates miR-205 expression by increasing DROSHA expression, and miR-205 promotes interleukin-32 expression by targeting its promoter region. Interleukin-32 and miR-205 significantly enhanced the invasion ability of HTR8/SVneo cells (a trophoblast cell line) and the tube formation ability of human umbilical vein endothelial cells. Through quantitative reverse transcription polymerase chain reaction and western blotting, the interleukin-32/miR-205 loop increased MMP2 and MMP9 expression in HTR-8/SVneo cells via the nuclear factor kappa B signalling pathway. Finally, using quantitative reverse transcription polymerase chain reaction, interleukin-32 and miR-205 expression levels were significantly lower in the placentas of patients with pregnancy-induced hypertension than in women with normal pregnancies. In conclusion, interleukin-32 regulates trophoblast invasion through the miR-205-nuclear factor kappa B-MMP2/9 pathway, which is involved in pregnancy-induced hypertension.

3.
EMBO Rep ; 23(2): e53514, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34866300

RESUMO

miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.


Assuntos
MicroRNAs , Animais , Bovinos , MicroRNAs/genética , MicroRNAs/metabolismo , Oócitos/metabolismo , Oogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Zigoto/metabolismo
4.
J Biochem Mol Toxicol ; 38(1): e23617, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38079211

RESUMO

Renal interstitial fibrosis (RIF) represents an irreversible and progressive pathological manifestation of chronic renal disease, which ultimately leads to end-stage renal disease. Long noncoding RNAs (lncRNAs) have been suggested to be involved in the progression of RIF. Small nucleolar RNA host gene 16 (SNHG16), a member of lncRNAs, has been found to be involved in the progression of pulmonary fibrosis. This paper first researched the effect of SNHG16 on renal fibrosis. We established a unilateral ureteral obstruction (UUO)-induced mouse RIF model by ligation of the left ureter to evaluate the biological function of SNHG16 in RIF. As a result, SNHG16 was upregulated in UUO-induced renal fibrotic tissues. Knockdown of SNHG16 inhibited RIF and reduced alpha-smooth muscle actin (α-SMA), fibronectin, and college IV expression. miR-205 was a target of SNHG16, and downregulated in UUO-induced renal fibrotic tissues. Inhibition of miR-205 promoted RIF and increased the expression of α-SMA, college IV, and fibronectin. Overexpression of SNHG16 promoted the UUO-induced RIF, but miR-205 abrogated this effect of SNHG16. Histone deacetylase 5 (HDAC5) showed high expression in UUO-induced renal fibrotic tissues. Knockdown of HDAC5 significantly reduced α-SMA, fibronectin, and college IV expression in renal tissues of UUO-induced mice. Inhibition of miR-205 promoted HDAC5 expression, but knockdown of SNHG16 inhibited HDAC5 expression in renal tissues of UUO-induced mice. In conclusion, SHNG16 is highly expressed in renal fibrotic tissues of UUO-induced mice. Knockdown of SHNG16 may prevent UUO-induced RIF by indirectly upregulating HDAC5 via targeting miR-205. SHNG16 may be novel target for treating renal fibrosis.


Assuntos
Nefropatias , MicroRNAs , RNA Longo não Codificante , Obstrução Ureteral , Animais , Humanos , Camundongos , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Histona Desacetilases/genética , Nefropatias/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
5.
J Biochem Mol Toxicol ; 38(1): e23594, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050438

RESUMO

The role of LINC01703 in cancers, especially in colorectal cancer (CRC), is still largely unclear. Bioinformatics prediction, real-time quantitative polymerase chain reaction (RT-qPCR), 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, colony formation assay, Transwell assays, in vivo animal experiments, IF, luciferase reporter assay, and Western blot were carried out for the exploration of the potential involvement and underlying molecular mechanisms of LINC01703 in CRC cells. The results showed that LINC01703 appeared upregulated in CRC and was linked to poor prognosis. LINC01703 acted as an oncogene in both in vitro and in vivo CRC cell environments. LINC01703 activated the PI3K/AKT signaling pathway by mediating the miR-205-5p/E2F1 axis in CRC. In summary, LINC01703 possesses an oncogenic function and can be a possible biomarker or target to treat CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Invasividade Neoplásica , MicroRNAs/genética , MicroRNAs/metabolismo , Movimento Celular/genética
6.
Pharmacology ; 109(2): 98-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325349

RESUMO

INTRODUCTION: Membrane-associated guanylate kinase with an inverted domain structure-1 (MAGI1) is dysregulated in diabetes; however, its role in diabetic nephropathy (DN) remains unclear. In this study, we determined the function and associated mechanisms of MAGI1 in DN. METHODS: Serum samples from 28 patients with DN and 28 normal volunteers were collected. High-glucose (HG)-treated human renal mesangial cells (HRMCs) and streptozotocin-treated rats were used as cell and animal models of DN, respectively. MAGI1 mRNA expression was measured by quantitative reverse transcription polymerase chain reaction. An 5-Ethynyl-2'-deoxyuridine assay was used to assess cell proliferation, whereas Western blot analysis was performed to quantitate the levels of markers associated with proliferation, the extracellular matrix (ECM), and inflammation. These included collagens I, collagen IV, cyclin D1, AKT, phosphorylated-AKT (p-AKT), PI3K, and phosphorylated-PI3K (p-PI3K). The predicted binding of miR-205-5p with the MAGI1 3'UTR was verified using a luciferase assay. RESULTS: MAGI1 expression was increased in serum samples from DN patients and in HRMCs treated with HG. MAGI1 knockdown attenuated excessive proliferation, ECM accumulation, and inflammation in HG-induced HRMCs as well as injury to DN rats. MiR-205-5p potentially interacted with the 3'UTR of MAGI1 and binding was verified using a dual-luciferase reporter assay. Moreover, miR-205-5p repression offset the inhibitory influence of MAGI1 knockdown on proliferation, collagen deposition, and inflammation in HG-treated HRMCs. CONCLUSION: MAGI1 contributes to injury caused by DN. Furthermore, miR-205-5p binds to MAGI1 and suppresses MAGI1 function. These findings suggest that miR-205-5p-mediates MAGI1 inhibition, which represents a potential treatment for DN.


Assuntos
Nefropatias Diabéticas , MicroRNAs , Animais , Humanos , Ratos , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Colágeno/metabolismo , Diabetes Mellitus , Nefropatias Diabéticas/genética , Glucose/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Inflamação/genética , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Biochem Genet ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376578

RESUMO

Diabetic nephropathy (DN) threatens the survival quality of patients, with complex pathogenesis. Circular RNA (circRNA) dysregulation occurs in DN development. This work aimed to investigate the role of circ-Luc7l in DN cell models and related molecular mechanisms. The expression of circ-Luc7l, microRNA (miR)-205-5p, and transforming growth factor-beta receptor 1 (Tgfbr1) was examined by real-time quantitative PCR (RT-qPCR). Cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) assay and EdU assay. The expression of extracellular matrix (ECM)-related markers and Tgrbr1 protein was measured by Western blot. The binding between miR-205-5p and circ-Luc7l or Tgfbr1 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay. Experimental animal models were established to elucidate the function of circ-Luc7l in vivo. Circ-Luc7l expression was notably enhanced in high glucose (HG)-treated mesangial cells. Knockdown of circ-Luc7l attenuated HG-induced cell proliferation, inflammation, and ECM accumulation in vitro and relieved inflammation and ECM accumulation of kidneys of diabetic mice in vivo. Circ-Luc7l targeted miR-205-5p, and miR-205-5p inhibition rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. MiR-205-5p bound to Tgfbr1 whose expression was negatively regulated by circ-Luc7l. Tgfbr1 overexpression also rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. In HG conditions, increased circ-Luc7l upregulated Tgfbr1 expression via targeting miR-205-5p to induce DN progression.

8.
Mikrochim Acta ; 191(9): 545, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158763

RESUMO

An electrochemical biosensor based on dual-amplified nucleic acid mode and biocatalytic silver deposition was constructed using catalytic hairpin assembly-hybrid chain reaction (CHA-HCR). The electrochemical detection of silver on the electrode by linear sweep voltammetry (LSV) can be utilized to quantitatively measure miR-205-5p since the amount of silver deposited on the electrode is proportional to the target nucleic acid. The current response values exhibit strong linearity with the logarithm of miR-205-5p concentrations ranging from 0.1 pM to 10 µM, and the detection limit is 28 fM. A consistent trend was found in the results of the qRT-PCR and electrochemical biosensor techniques, which were employed to determine the total RNA recovered from cells, respectively. Moreover, the constructed sensor was used to assess miR-205-5p on various cell counts, and the outcomes demonstrated the excellent analytical efficiency of the proposed strategy. The recoveries ranged from 97.85% to 115.3% with RSDs of 2.251% to 4.869% in human serum samples. Our electrochemical biosensor for miR-205-5p detection exhibits good specificity, high sensitivity, repeatability, and stability. It is a potentially useful sensing platform for tumor diagnosis and tumor type identification in clinical settings.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Limite de Detecção , MicroRNAs , Prata , Técnicas Biossensoriais/métodos , Humanos , MicroRNAs/sangue , MicroRNAs/análise , Prata/química , Técnicas Eletroquímicas/métodos , Eletrodos , Técnicas de Amplificação de Ácido Nucleico/métodos
9.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256008

RESUMO

Exosomes or small extracellular vesicles (sEVs) represent a pivotal component in intercellular communication, carrying a diverse array of biomolecules. Several factors can affect sEVs release dynamics, as occurs in hyperglycemia or inflammation. In fact, sEVs release has been associated with the promotion of physio-pathological processes. Among the sEVs cargo, microRNAs play an essential role in cell-to-cell regulation. More concretely, miR-205-5p is related to angiogenesis and cell proliferation. The aim of this study is to understand the specific role of sEVs containing miR-205-5p under high glucose conditions. ARPE-19 cells were cultured with high glucose (HG) for 5 days. sEVs were isolated and characterized. sEVs from ARPE-19 were used for angiogenesis and cell proliferation. HG increased sEVs release but downregulated miR-205-5p cargo expression compared to the control. sEVs from HG-treated ARPE-19 cells promoted tube formation and migration processes. In contrast, miR-205-5p overexpression (by mimic transfection) decreased angiogenesis and cell migration. Our results demonstrate how ARPE-19 cells respond to HG challenge by increasing sEVs with weak miR-205-5p cargo. The absence of this miRNA in sEVs is enough to promote angiogenesis. In contrast, restoring sEVs-miR-205-5p levels decreased it. These findings open new possibilities in sEVs-based therapies containing miR-205-5p against angiogenesis.


Assuntos
Angiogênese , MicroRNAs , Comunicação Celular , Movimento Celular/genética , MicroRNAs/genética , Glucose
10.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542261

RESUMO

MicroRNAs (miRNA) are involved in the process of carcinogenesis, including the development of endometrial cancer (EC). This study aimed to investigate the association between the expression of three miRNAs (miR-21-5p, miR-205-5p, and miR-222-3p) in endometrial cancer tissues. In addition, the stability of expression of SNORD48 and U6, which were initially planned to be used as reference miRNAs for normalization, was investigated. Endometrial tissue was obtained from 111 patients with EC during hysterectomy and from 19 patients undergoing surgery for uterine fibroids or pelvic organ prolapse as a control group without neoplastic changes. Our study was based on calculations made with a digital PCR method (Qiagen, Hilden, Germany) to measure the absolute expression. In the endometrial cancer tissue, miR-205-5p was upregulated, while miR-222-3p and SNORD48 were downregulated compared to the control group. We detected statistically significant correlation of miR-205-5p, U6, and SNORD48 expression with different histological grades; the expression of miR-205-5p increases with the histopathological grade advancement (intraepithelial neoplasia- EIN = 1590, G1 = 3367.2, G2 = 8067 and G3 = 20,360), while U6 and SNORD expression decreases from EIN to G2 and increases again in the G3 grade (U6: EIN = 19,032, G1 = 16,482.4, G2 = 13,642.4, G3 = 133,008; SNORD48: EIN = 97,088, G1 = 59,520, G2 = 43,544, G3 = 227,200). Our study suggests that upregulation of miR-205-5p and downregulation of miR-222-3p and SNORD48 may influence development of endometrial cancer. Moreover, miR-205-5p, U6, and SNORD48 expression changes may be associated with progression of endometrial cancer. The results also indicate that SNORD48 and U6, commonly used as internal references, may influence endometrial cancer development and progression; therefore, they should not be used as references. However, it is important to note that further research is required to understand their role in endometrial cancer.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Feminino , Humanos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Endométrio/genética , Regulação para Baixo/genética , Reação em Cadeia da Polimerase
11.
J Med Virol ; 95(5): e28789, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212325

RESUMO

Integration of human papilloma virus (HPV) DNA into the human genome may progressively contribute to cervical carcinogenesis. To explore how HPV integration affects gene expression by altering DNA methylation during carcinogenesis, we analyzed a multiomics dataset for cervical cancer. We obtained multiomics data by HPV-capture sequencing, RNA sequencing, and Whole Genome Bisulfite Sequencing from 50 patients with cervical cancer. We detected 985 and 485 HPV-integration sites in matched tumor and adjacent paratumor tissues. Of these, LINC00486 (n = 19), LINC02425 (n = 11), LLPH (n = 11), PROS1 (n = 5), KLF5 (n = 4), LINC00392 (n = 3), MIR205HG (n = 3) and NRG1 (n = 3) were identified as high-frequency HPV-integrated genes, including five novel recurrent genes. Patients at clinical stage II had the highest number of HPV integrations. E6 and E7 genes of HPV16 but not HPV18 showed significantly fewer breakpoints than random distribution. HPV integrations occurring in exons were associated with altered gene expression in tumor tissues but not in paratumor tissues. A list of HPV-integrated genes regulated at transcriptomic or epigenetic level was reported. We also carefully checked the candidate genes with regulation pattern correlated in both levels. HPV fragments integrated at MIR205HG mainly came from the L1 gene of HPV16. RNA expression of PROS1 was downregulated when HPV integrated in its upstream region. RNA expression of MIR205HG was elevated when HPV integrated into its enhancer. The promoter methylation levels of PROS1 and MIR205HG were all negatively correlated with their gene expressions. Further experimental validations proved that upregulation of MIR205HG could promote the proliferative and migrative abilities of cervical cancer cells. Our data provides a new atlas for epigenetic and transcriptomic regulations regarding HPV integrations in cervical cancer genome. We demonstrate that HPV integration may affect gene expression by altering methylation levels of MIR205HG and PROS1. Our study provides novel biological and clinical insights into HPV-induced cervical cancer.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Transcriptoma , Multiômica , Epigenômica , Transformação Celular Neoplásica , Carcinogênese/genética , Papillomavirus Humano 16/genética , RNA/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Integração Viral
12.
Cancer Cell Int ; 23(1): 194, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670265

RESUMO

OBJECTIVES: Lung adenocarcinoma (LUAD) exhibits a higher fatality rate among all cancer types worldwide, yet the precise mechanisms underlying its initiation and progression remain unknown. Mounting evidence suggests that long non-coding RNAs (lncRNAs) exert significant regulatory roles in cancer development and progression. Nevertheless, the precise involvement of lncRNA CYP4A22-AS1 in LUAD remains incompletely comprehended. METHODS: Bioinformatics analyses evaluated the expression level of CYP4A22-AS1 in lung adenocarcinoma and paracancer. The LUAD cell line with a high expression of CYP4A22-AS1 was constructed to evaluate the role of CYP4A22-AS1 in the proliferation and metastasis of LUAD by CCK8, scratch healing, transwell assays, and animal experiments. We applied transcriptome and microRNA sequencing to examine the mechanism of CYP4A22-AS1 enhancing the proliferation and metastasis of LUAD. Luciferase reporter gene analyses, west-blotting, and qRT-PCR were carried out to reveal the interaction between CYP4A22-AS1, miR-205-5p/EREG, and miR-34c-5p/BCL-2 axes. RESULTS: CYP4A22-AS1 expression was significantly higher in LUAD tissues than in the adjacent tissues. Furthermore, we constructed a LUAD cell line with a high expression of CYP4A22-AS1 and noted that the high expression of CYP4A22-AS1 significantly enhanced the proliferation and metastasis of LUAD. We applied transcriptome and microRNA sequencing to examine the mechanism of CYP4A22-AS1 enhancing the proliferation and metastasis of LUAD. CYP4A22-AS1 increased the expression of EREG and BCL-2 by reducing the expression of miR-205-5p and miR-34-5p and activating the downstream signaling pathway of EGFR and the anti-apoptotic signaling pathway of BCL-2, thereby triggering the proliferation and metastasis of LUAD. The transfection of miR-205-5p and miR-34-5p mimics inhibited the role of CYP4A22-AS1 in enhancing tumor progression. CONCLUSION: This study elucidates the molecular mechanism whereby CYP4A22-AS1 overexpression promotes LUAD progression through the miR-205-5p/EREG and miR-34c-5p/BCL-2 axes.

13.
BMC Cancer ; 23(1): 956, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814205

RESUMO

MicroRNAs (miRNAs) have been reported to serve as potential biomarkers in bladder cancer and play important roles in cancer progression. This study aimed to investigate the biological role of miR-205-3p in bladder cancer. We showed that miR-205-3p was significantly down-regulated in bladder cancer tissues and cells. Moreover, overexpression of miR-205-3p inhibited bladder cancer progression in vitro. Then we confirmed that GLO1, a downstream target of miR-205-3p, mediated the effect of miR-205-3p on bladder cancer cells. In addition, we found that miR-205-3p inhibits P38/ERK activation through repressing GLO1. Eventually, we confirmed that miR-205-3p inhibits the occurrence and progress of bladder cancer by targeting GLO1 in vivo by nude mouse tumorigenesis and immunohistochemistry. In a word, miR-205-3p inhibits proliferation and metastasis of bladder cancer cells by activating the GLO1 mediated P38/ERK signaling pathway and that may be a potential therapeutic target for bladder cancer.


Assuntos
Lactoilglutationa Liase , MicroRNAs , Neoplasias da Bexiga Urinária , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia , Humanos , Lactoilglutationa Liase/metabolismo
14.
Int Arch Allergy Immunol ; 184(10): 1056-1070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37343537

RESUMO

INTRODUCTION: Circular RNAs (circRNAs) are essential in the progression of allergic rhinitis (AR). The purpose of this research was to examine the role of circRNA ADP-ribosylation factor 3 (circARF3) in the pathogenesis of AR. METHODS: To generate an animal model of AR, mice were treated with house dust mite (HDM), and mice nasal epithelial cells (NEpCs) were treated with IL-4/IL-13 to imitate the inflammatory damage of AR in vitro. Sanger sequencing, qRT-PCR, and RNAse R digestion assays all validated the circularization structure of circARF3. The levels of circARF3, miR-205-5p, and sirtuin 5 (SIRT5) were determined by qRT-PCR or Western blotting. Luciferase reporter, RNA immunoprecipitation, and pull-down experiments were used to investigate the regulatory network. Flow cytometry was used to investigate the rate of cell apoptosis, and Western blotting was used to determine the levels of apoptotic-related proteins (cleaved caspase 3, cleaved polyadenosine-diphosphate-ribose polymerase) and HMGB1, TLR4, and MyD88. Enzyme-linked immunosorbent assay was used to assess the inflammatory response. Hematoxylin-eosin staining and TUNEL were used to detect the histology of injury and apoptosis of nasal mucosa tissues. RESULTS: CircARF3 and SIRT5 levels were reduced in HDM-treated animals and IL-4/IL-13-treated NEpCs, while miR-205-5p expression was increased. CircARF3 was generated by back-splicing exons 3-5 with a stable circular shape. CircARF3 overexpression mitigated IL-4/IL-13-induced apoptosis in NEpCs by inhibiting miR-205-5p. SIRT5 upregulation attenuated IL-4/IL-13-induced inflammatory injury in NEpCs, and SIRT5 knockdown induced opposite effects. miR-205-5p silencing reversed the effects of SIRT5 knockdown on IL-4/IL-13-induced inflammatory injury. Furthermore, circARF3 overexpression alleviated histological abnormalities, apoptosis, inflammatory response, and HMGB1/TLR4 signaling activation in HDM-treated animals. CONCLUSION: CircARF3 inhibited cell apoptosis and inflammation via the miR-205-5p/SIRT5 axis in IL-4/IL-13-treated NEpCs and HDM-treated mice.


Assuntos
Proteína HMGB1 , MicroRNAs , Rinite Alérgica , Sirtuínas , Animais , Camundongos , Interleucina-13 , Interleucina-4 , Receptor 4 Toll-Like/genética , Rinite Alérgica/genética , MicroRNAs/genética , Mucosa Nasal , Dermatophagoides pteronyssinus , Pyroglyphidae , Apoptose/genética , Sirtuínas/genética
15.
Exp Cell Res ; 415(1): 113119, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35341776

RESUMO

Osteoporosis is a prevalent degenerative disease that is characterized by decreased bone density and strength, resulting in gradually increasing bone fragility. Osteoporosis is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) participate in the occurrence and development of osteoporosis. Herein, we explored the role of lncRNA KCNQ1OT1 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). QPCR results indicated that KCNQ1OT1 and RICTOR were down-regulated, while miR-205-5p was up-regulated in the osteoporotic patients, as compared with non-osteoporotic controls. During the osteogenic differentiation of BMSCs, the expression of KCNQ1OT1 and RICTOR was upregulated, whereas miR-205-5p was downregulated. The interaction among KCNQ1OT1, miR-205-5p and RICTOR was validated by dual luciferase reporter system. KCNQ1OT1 promoted RICTOR expression via inhibiting miR-205-5p, therefore promoting osteogenesis as demonstrated by ALP assay, alizarin red staining and the increased expression of osteogenic markers (OPN, RUNX2 and OCN). Furthermore, KCNQ1OT1 overexpression or miR-205-5p inhibition could promote ALP activity and mineralization of BMSCs, while overexpressed miR-205-5p could reverse the effects of overexpressed KCNQ1OT1, and knockdown of RICTOR could reverse the effects of miR-205-5p inhibition. In conclusion, our study illustrated that KCNQ1OT1 might inhibit miR-205-5p in BMSCs, thus upregulating the expression of RICTOR and promoting osteogenic differentiation.


Assuntos
MicroRNAs , Osteoporose , RNA Longo não Codificante , Diferenciação Celular/genética , Células Cultivadas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , RNA Longo não Codificante/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Fatores de Transcrição/metabolismo
16.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1456-1466, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491880

RESUMO

Homocysteine (Hcy) is a risk factor for multiple chronic diseases, and vascular endothelial cell injury has been regarded as the initiating step for this process. miRNAs are involved in Hcy-induced endothelial dysfunction, while the underlying mechanism and roles of miRNAs in pulmonary endothelial dysfunction induced by homocysteine are unknown. Here, we find that miR-205-5p alleviates pulmonary endothelial dysfunction by targeting FOXO1 in CBS +/‒ mice to protect against Hcy-induced pulmonary endothelial dysfunction. Mechanistically, we show that Hcy can lead to DNA hypermethylation of the miR-205-5p promoter due to the increased binding of DNMT1 to its promoter, which contributes to reduction of miR-205-5p expression. In summary, miR-205-5p promoter hypermethylation causes downregulation of miR-205-5p expression, resulting in a reduction in miR-205-5p binding to FOXO1 during homocysteine-induced pulmonary endothelial dysfunction. Our data indicate that miR-205-5p may be a potential therapeutic target against Hcy-induced pulmonary injury.


Assuntos
MicroRNAs , Animais , Camundongos , Metilação de DNA , Regulação para Baixo , Células Endoteliais/metabolismo , Endotélio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
17.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894829

RESUMO

Endometrial receptivity is a complex process that prepares the uterine endometrium for embryo implantation; insufficient endometrial receptivity is one of the causes of implantation failure. Here, we analyzed the microRNA expression profiles of exosomes derived from both receptive (RL95-2) and non-receptive (AN3-CA) endometrial epithelial cell (EEC) lines to identify exosomal miRNAs closely linked to endometrial receptivity. Among the 466 differentially expressed miRNAs, miR-205-5p was the most highly expressed in exosomes secreted from receptive RL95-2 cells. miR-205-5p, enriched at the adhesive junction, was closely related to endometrial receptivity. ZEB1, a transcriptional repressor of E-cadherin associated with endometrial receptivity, was identified as a direct target of miR-205-5p. miR-205-5p expression was significantly lower in the endometrial tissues of infertile women than in that of non-infertile women. In vivo, miR-205-5p expression was upregulated in the post-ovulatory phase, and its inhibitor reduced embryo implantation. Furthermore, administration of genetically modified exosomes overexpressing miR-205-5p mimics upregulated E-cadherin expression by targeting ZEB1 and improved spheroid attachment of non-receptive AN3-CA cells. These results suggest that the miR-205-5p/ZEB1/E-cadherin axis plays an important role in regulating endometrial receptivity. Thus, the use of exosomes harboring miR-205-5p mimics can be considered a potential therapeutic approach for improving embryo implantation.


Assuntos
Infertilidade Feminina , MicroRNAs , Feminino , Humanos , Caderinas/genética , Caderinas/metabolismo , Implantação do Embrião/genética , Endométrio/metabolismo , Infertilidade Feminina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
18.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834189

RESUMO

Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors, and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally relieving cells of osimertinib reversed transition trends, suggesting that the implementation of treatment pauses could provide prolonged benefits for patients. Our results provide new insights into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and highlight their role as potential biomarkers and therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Transição Epitelial-Mesenquimal/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Mutação , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
19.
BMC Cardiovasc Disord ; 22(1): 286, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751015

RESUMO

BACKGROUND: Circulating microRNAs (miRNAs) are considered a hot spot of research that can be employed for monitoring and/or diagnostic purposes in coronary artery disease (CAD). Since different disease features might be reflected on altered profiles or plasma miRNAs concentrations, a combination of miRNAs can provide more reliable non-invasive biomarkers for CAD. SUBJECTS AND METHODS: We investigated a panel of 14-miRNAs selected using bioinformatics databases and current literature searching for miRNAs involved in CAD using quantitative real-time PCR technique in 73 CAD patients compared to 73 controls followed by function and pathway enrichment analysis for the 14-miRNAs. RESULTS: Our results revealed three out of the 14 circulating miRNAs understudy; miRNAs miR133a, miR155 and miR208a were downregulated. While 11 miRNAs were up-regulated in a descending order from highest fold change to lowest: miR-182, miR-145, miR-21, miR-126, miR-200b, miR-146A, miR-205, miR-135b, miR-196b, miR-140b and, miR-223. The ROC curve analysis indicated that miR-145, miR-182, miR-133a and, miR-205 were excellent biomarkers with the highest AUCs as biomarkers in CAD. All miRNAs under study except miR-208 revealed a statistically significant relation with dyslipidemia. MiR-126 and miR-155 showed significance with BMI grade, while only miR-133a showed significance with the obese patients in general. MiR-135b and miR-140b showed a significant correlation with the Wall Motion Severity Index. Pathway enrichment analysis for the miRNAS understudy revealed pathways relevant to the fatty acid biosynthesis, ECM-receptor interaction, proteoglycans in cancer, and adherens junction. CONCLUSION: The results of this study identified a differentially expressed circulating miRNAs signature that can discriminate CAD patients from normal subjects. These results provide new insights into the significant role of miRNAs expression associated with CAD pathogenesis.


Assuntos
MicroRNA Circulante , Doença da Artéria Coronariana , MicroRNAs , Biomarcadores , Estudos de Casos e Controles , MicroRNA Circulante/genética , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Humanos
20.
Exp Cell Res ; 404(2): 112579, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957117

RESUMO

Anti-angiogenic therapy represents one of the most promising treatment modalities for human cancers. However, the response to antiangiogenic therapy in gastric cancer (GC) remains dismal. To help identify new strategies for antiangiogenic therapy in GC, we evaluated miR-205-5p expression in GC tissues from TCGA database and our hospital, and its functions in angiogenesis were explored in vitro and in vivo. We investigated miR-205-5p expression and microvessel densities (MVDs) in GC tissues and liver metastases from patients. The function and mechanisms of miR-205-5p were examined in human cell lines and in xenograft mouse models. Associations between miR-205-5p expression and clinical characteristics were analyzed using either Pearson's χ2 test or Fisher's exact test. Differences in overall survival (OS) distributions were evaluated using the log-rank test. Differences in measurement data were compared using Student's t-test and one-way ANOVA. We found that miR-205-5p expression was downregulated in GC tissues and was negatively correlated with CD31 expression in both TCGA and our clinical samples. GC cell lines expressed low levels of miR-205-5p, and miR-205-5p upregulation significantly impaired the proliferation and angiogenesis of GC cells. Moreover, vascular endothelial growth factor A (VEGFA) and fibroblast growth factor 1 (FGF1) expression and activation of extracellular-related kinase (ERK) signaling were suppressed by miR-205-5p. MiR-205-5p inhibition promoted malignant phenotypes by enhancing VEGFA and FGF1 expression, as well as the activation of ERK signaling. Angiogenesis and ERK signaling were decreased in response to VEGFA and FGF1 downregulation induced by miR-205-5p overexpression. The dual-luciferase reporter assay showed that VEGFA and FGF1 were direct targets of miR-205-5p. Xenograft mouse models revealed that miR-205-5p suppressed tumor growth by inhibiting neovascularization. Altogether, these results demonstrate that miR-205-5p suppresses angiogenesis in GC by attenuating the expression of VEGFA and FGF1, indicating that upregulation of miR-205-5p may represent as an antiangiogenic therapy for GC.


Assuntos
MicroRNAs/genética , Neovascularização Patológica/genética , Neoplasias Gástricas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa