Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984969

RESUMO

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
2.
Arch Biochem Biophys ; 758: 110063, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880321

RESUMO

To investigate the potential molecular mechanism of miR-34a in Sjögren's syndrome (SS). Transmission electron microscopy was used to observe the salivary gland tissues of mild and severe SS patients. SS mouse model was constructed and injected with miR-34a antagonist. HSGE cells were transfected with miR-34a mimic. Starbase predicted miR-34a binding sites and validated them with dual-luciferase reporter assays. Immunohistochemistry, HE staining, CCK-8, TUNEL assay, flow cytometry, immunofluorescence and Western Blot were used to investigate the effects of miR-34a on NF-κB signaling and mitochondrial pathway of apoptosis in HSGE cells. Severe SS patients showed obvious mitochondrial damage and apoptosis in salivary glands. MiR-34a was overexpressed and NF-κB signaling is activated in salivary glands of severe SS patients. Inhibition of miR-34a alleviated salivary gland injury in SS mice, as well as inhibited the activation of NF-κB signaling and mitochondrial pathway of apoptosis. In conclusion, miR-34a promoted NF-κB signaling by targeting IκBα, thereby causing mitochondrial pathway apoptosis and aggravating SS-induced salivary gland damage.


Assuntos
Apoptose , Células Epiteliais , MicroRNAs , Mitocôndrias , NF-kappa B , Glândulas Salivares , Transdução de Sinais , Síndrome de Sjogren , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Camundongos , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/genética , Síndrome de Sjogren/patologia , Feminino , Linhagem Celular , Masculino , Pessoa de Meia-Idade
3.
Arch Biochem Biophys ; 759: 110103, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053682

RESUMO

Aberration of the gastric mucosal barrier homeostasis circuit is one of the key features linked to the onset of gastric ulcers (GU). This work aimed to inspect the gastroprotective influence of dimethyl fumarate (DMF) on ethanol-induced GU in rats and to decipher the possible mechanisms entailed. Rats were pretreated with either DMF (80 mg/kg) or omeprazole (OMP) (20 mg/kg) by oral gavage for 2 weeks. After 24 h of starvation, ethanol (5 ml/kg, oral) was employed to trigger GU in rats, while carboxymethyl cellulose (CMC) was used as a control. Ethanol notably elevated both macroscopic and microscopic gastric damage. DMF and OMP exhibited similar effects on gastric ulcer healing. DMF intervention led to a substantial improvement in gastric insults. DMF significantly reduced ethanol-triggered gastric lesions, as manifested by decreased gastric secretion, acidity, ulcer surface area percent, reduced leukocyte incursion, and increased mucus percent. DMF upregulated miR-34a-5p expression concomitant with the suppression of high mobility group box1 (HMGB1) and inflammatory responses in gastric mucosal homogenate. DMF improved GU by restoring reduced antioxidant defense mechanisms through the coactivation of nuclear factor erythroid 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), and sirtuin1 (SIRT1), indicating the protective role of the PPARγ/SIRT1/Nrf2 pathway. Intriguingly, DMF mitigated apoptosis in ethanol-elicited GU. Taken together, this research implies the potential for the repurposing of DMF as an innovative gastroprotective medication to reestablish the balance of the gastric mucosal barrier via the attenuation of gastric inflammation, oxidative stress, and apoptosis.


Assuntos
Fumarato de Dimetilo , Etanol , Proteína HMGB1 , MicroRNAs , Fator 2 Relacionado a NF-E2 , PPAR gama , Sirtuína 1 , Úlcera Gástrica , Receptor 4 Toll-Like , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Etanol/toxicidade , Etanol/efeitos adversos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Ratos , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , PPAR gama/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos Wistar
4.
Biochem Genet ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103713

RESUMO

Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.

5.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062918

RESUMO

The aging process is linked to numerous cellular changes, among which are modifications in the functionality of dermal fibroblasts. These fibroblasts play a crucial role in sustaining the healing of skin wounds. Reduced cell proliferation is a hallmark feature of aged dermal fibroblasts. Long intergenic non-coding RNA (lincRNAs), such as LincRNA-EPS (Erythroid ProSurvival), has been implicated in various cellular processes. However, its role in aged dermal fibroblasts and its impact on the cell cycle and its regulator, Cyclin D1 (CCND1), remains unclear. Primary dermal fibroblasts were isolated from the skin of 17-week-old (young) and 88-week-old (aged) mice. Overexpression of LincRNA-EPS was achieved through plasmid transfection. Cell proliferation was detected using the MTT assay. Real-time PCR was used to quantify relative gene expressions. Our findings indicate a noteworthy decline in the expression of LincRNA-EPS in aged dermal fibroblasts, accompanied by reduced levels of CCND1 and diminished cell proliferation in these aging cells. Significantly, the overexpression of LincRNA-EPS in aged dermal fibroblasts resulted in an upregulation of CCND1 expression and a substantial increase in cell proliferation. Mechanistically, LincRNA-EPS induces CCND1 expression by sequestering miR-34a, which was dysregulated in aged dermal fibroblasts, and directly targeting CCND1. These outcomes underscore the crucial role of LincRNA-EPS in regulating CCND1 and promoting cell proliferation in aged dermal fibroblasts. Our study provides novel insights into the molecular mechanisms underlying age-related changes in dermal fibroblasts and their implications for skin wound healing. The significant reduction in LincRNA-EPS expression in aged dermal fibroblasts and its ability to induce CCND1 expression and enhance cell proliferation highlight its potential as a therapeutic target for addressing age-related skin wound healing.


Assuntos
Proliferação de Células , Ciclina D1 , Fibroblastos , RNA Longo não Codificante , Ciclina D1/metabolismo , Ciclina D1/genética , Fibroblastos/metabolismo , Fibroblastos/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Pele/metabolismo , Pele/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Células Cultivadas , Envelhecimento da Pele/genética , Derme/citologia , Derme/metabolismo , Senescência Celular/genética , Regulação da Expressão Gênica , Cicatrização/genética , Envelhecimento/genética
6.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474177

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) can cause a variety of malignancies. Ganciclovir (GCV) is one of the most efficient drugs against KSHV, but its non-specificity can cause other side effects in patients. Nucleic acid miR-34a-5p can inhibit the transcription of KSHV RNA and has great potential in anti-KSHV therapy, but there are still problems such as easy degradation and low delivery efficiency. Here, we constructed a co-loaded dual-drug nanocomplex (GCV@ZIF-8/PEI-FA+miR-34a-5p) that contains GCV internally and adsorbs miR-34a-5p externally. The folic acid (FA)-coupled polyethyleneimine (PEI) coating layer (PEI-FA) was shown to increase the cellular uptake of the nanocomplex, which is conducive to the enrichment of drugs at the KSHV infection site. GCV and miR-34a-5p are released at the site of the KSHV infection through the acid hydrolysis characteristics of ZIF-8 and the "proton sponge effect" of PEI. The co-loaded dual-drug nanocomplex not only inhibits the proliferation and migration of KSHV-positive cells but also decreases the mRNA expression level of KSHV lytic and latent genes. In conclusion, this co-loaded dual-drug nanocomplex may provide an attractive strategy for antiviral drug delivery and anti-KSHV therapy.


Assuntos
Herpesvirus Humano 8 , MicroRNAs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Ganciclovir/farmacologia , MicroRNAs/genética , Sarcoma de Kaposi/genética
7.
Med Mol Morphol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039188

RESUMO

The current study aims to evaluate the levels of miR-34a, RASSF1A, and E-cadherin in relation to the levels of isoform B of progesterone receptor (PRB) in endometrioid carcinoma (EC) and atypical hyperplasia (AEH) and their association with clinicopathological parameters. 105 cases (35 EC, 35 AEH, and 35 control) were involved in this study. Cases of AEH received treatment, and other samples were obtained after 6 months to assess the response. E-cadherin and PRB were assessed by immunohistochemistry (IHC), RASSFA methylation by MSP-PCR, and its serum level by ELISA and miR-34a via quantitative PCR. The expressions of miR-34a, RASSF1A, E-cadherin, and PRB differ among the studied groups; all were higher in normal compared with AEH and EC, with a statistically significant difference. The higher PRB expression and decreased miR-34a and RASSF1A expression were associated with resistance to hormonal therapy in AEH. High PRB in EC is associated with lower RASSFA1, E-cadherin, and miR-34a. Decreased expressions of RASSF1A, miR-34a, and E-cadherin had a significant connection to advanced stages. Expression of PRB and miR-34a and serum levels of RASSF1A predict response to treatment in cases of AEH. High PRB and low E-cadherin expression are associated with progressive disease in EC.

8.
Oncol Res ; 32(3): 577-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361758

RESUMO

Background: microRNA-34a (miR-34a) had been reported to have a diagnostic role in acute myeloid leukemia (AML). However, its value in the bone marrow (BM) of AML patients, in addition to its role in response to therapy is still unclear. The current study was designed to assess the diagnostic, prognostic, and predictive significance of miR-34a in the BM of AML patients. Methods: The miR-34a was assessed in BM aspirate of 82 AML patients in relation to 12 normal control subjects using qRT-PCR. The data were assessed for correlation with the relevant clinical criteria, response to therapy, disease-free survival (DFS), and overall survival (OS) rates. Results: miR-34a was significantly downregulated in AML patients [0.005 (3.3 × 10-6-1.32)], compared to the control subjects [0.108 (3.2 × 10-4-1.64), p = 0.021]. The median relative quantification (RQ) of miR-34a was 0.106 (range; 0-32.12). The specificity, sensitivity, and area under the curve (AUC) for the diagnosis of AML were (58.3%, 69.5%, 0.707, respectively, p = 0.021). patients with upregulated miR-34a showed decreased platelets count <34.5 × 109/L, and achieved early complete remission (CR, p = 0.031, p = 0.044, respectively). Similarly, patients who were refractory to therapy showed decreased miR-34a levels in comparison to those who achieved CR [0.002 (0-0.01) and 0.12 (0-32.12), respectively, p = 0.002]. Therefore, miR-34a could significantly identify patients with CR with a specificity of 75% and sensitivity of 100% at a cut-off of 0.014 (AUC = 0.927, p = 0.005). There was no considerable association between miR-34a expression and survival rates of the included AML patients. Conclusion: miR-34a could be a beneficial diagnostic biomarker for AML patients. In addition, it serves as a good indicator for response to therapy, which could possibly identify patients who are refractory to treatment with 100% sensitivity and 75% specificity.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Medula Óssea/química , Medula Óssea/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Prognóstico , Intervalo Livre de Doença
9.
Immun Inflamm Dis ; 12(1): e1053, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270305

RESUMO

BACKGROUND: Previous studies have reported SIRT1 was inversely modulated by miR-34a, However, mechanism of metformin (MFN)'s renal podocyte protection under high glucose (HG) conditions and the connection between miR-34a and SIRT1 expression in diabetic nephropathy (DN) remain unclear. METHOD: We aimed to further elucidate the role of miR-34a in HG-treated podocytes in DN. A conditionally immortalized human podocyte cell line was cultivated in d-glucose (30 mM). RESULTS: Microarray and RT-qPCR revealed that miR-34a was downregulated in HG-treated podocytes. Additionally, miR-34a levels increased in MFN-treated HG-induced podocytes. CCK-8 assay, colony formation assay, flow cytometry, and Western blot detection showed that HG treatment reduced cell viability and promoted via HG treatment, and MFN treatment reversed this phenotypic change. MiR-34a upregulation caused restored cell viability and suppressed cell apoptosis in HG-treated podocytes, and miR-34a downregulation led to damaged cell survival and induced apoptosis in MFN-administered and HG-treated podocytes. The dual luciferase reporter assay showed that SIRT1 3'-UTR was a direct miR-34a target. Further studies demonstrated an elevation in SIRT1 levels in HG-exposed podocytes, whereas MFN treatment decreased SIRT1 levels. In addition, miR-34a upregulation led to reduced SIRT1 expression, whereas miR-34a inhibition increased SIRT1 levels in cells. MFN-induced miR-34a suppresses podocyte apoptosis under HG conditions by acting on SIRT1. CONCLUSION: This study proposes a promising approach to interpret the mechanisms of action of the MFN-miR-34a axis involved in DN.


Assuntos
Metformina , MicroRNAs , Podócitos , Humanos , Apoptose , Glucose/toxicidade , Metformina/farmacologia , MicroRNAs/genética , Sirtuína 1/genética
10.
Am J Transl Res ; 16(6): 2711-2718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006295

RESUMO

OBJECTIVES: This study aims to explore the implications of serum miR-34a in breast cancer (BC) and its predictive value for the efficacy of neoadjuvant chemotherapy (NACT). METHODS: A retrospective analysis was performed on 102 female BC patients (research group) admitted to The Second Affiliated Hospital of Anhui Medical University between January 2016 to March 2018 and 102 concurrent female health controls who underwent physical examinations (control group). Serum samples from both groups were subjected to quantitative reverse transcription polymerase chain reaction to measure miR-34a expression. The correlation of miR-34a with BC patients' clinical parameters was analyzed, and the implications of miR-34a for diagnosing BC and predicting NACT efficacy were assessed by receiver operating characteristic curves. Logistic regression analysis was employed to determine whether miR-34a independently influenced treatment effectiveness and patient outcomes. RESULTS: The data showed significantly lower miR-34a levels in the research group than in the control group (P<0.05). The area under the curve (AUC) of miR-34a for differentiating BC was 0.888. In BC patients, miR-34a was strongly correlated with tumor staging and differentiation degree. Following NACT, BC patients showed an evident rise in miR-34a expression, with higher levels in patients with effective treatment compared to those with treatment failure (P<0.05). The AUC values of serum miR-34a in predicting the efficacy of neoadjuvant chemotherapy from FD to SD and from SD to TD were 0.880 and 0.861, respectively (P<0.001). Furthermore, patients with favorable prognosis exhibited markedly higher serum miR-34a expression than those with poor prognosis (P<0.05). The AUC of miR-34a expression for predicting adverse prognosis was 0.825. Decreased miR-34a was identified as an independent risk factor for treatment failure and poor prognosis. CONCLUSIONS: Taken together, serum miR-34a is downregulated in BC and can predict the clinical progression of BC patients and the therapeutic efficacy of NACT.

11.
J Dent Sci ; 19(1): 428-437, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303867

RESUMO

Background/purpose: Oral cancer is a prevalent malignancy affecting men globally. This study aimed to investigate the regulatory role of miR-34a in oral cancer cells through the Axl/Akt/glycogen synthase kinase-3ß (GSK-3ß) pathway and its impact on cellular malignancy. Materials and methods: We examined the effects of miR-34a overexpression on the malignancy of oral cancer cells. Multiple oral cancer cell lines were assessed to determine the correlation between endogenous miR-34a and Axl levels. Transfection experiments with miR-34a were conducted to analyze its influence on Axl mRNA and protein expression. Luciferase reporter assays were performed to investigate miR-34a's modulation of Axl gene transcription. Manipulation of miR-34a expression was utilized to demonstrate its regulatory effects on oral cancer cells through the Axl/Akt/GSK-3ß pathway. Results: Overexpression of miR-34a significantly suppressed the malignancy of oral cancer cells. We observed an inverse correlation between endogenous miR-34a and Axl levels across multiple oral cancer cell lines. Transfection of miR-34a resulted in decreased Axl mRNA and protein expression, and luciferase reporter assays confirmed miR-34a-mediated modulation of Axl gene transcription. The study revealed regulatory effects of miR-34a on oral cancer cells through the Axl/Akt/GSK-3ß pathway, leading to alterations in downstream target genes involved in cellular proliferation and tumorigenesis. Conclusion: Our findings highlight the significance of the miR-34a/Axl/Akt/GSK-3ß signaling axis in modulating the malignancy of oral cancer cells. Targeting miR-34a may hold therapeutic potential in oral cancer treatment, as manipulating its expression can attenuate the aggressive behavior of oral cancer cells via the Axl/Akt/GSK-3ß pathway.

12.
Stem Cell Res Ther ; 15(1): 238, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080798

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are one of the most widely studied adult stem cells, while MSC replicative senescence occurs with serial expansion in vitro. We determined whether miR-34a can regulate MSC senescence by directly targeting glycolytic key enzymes to influence glycolysis. METHODS: Detected the effects of miR-34a on MSC senescence and glycolytic metabolism through gene manipulation. Bioinformatics prediction and luciferase reporter assay were applied to confirm that HK1 is a direct target of miR-34a. The underlying regulatory mechanism of miR-34a targeting HK1 in MSC senescence was further explored by a cellular function recovery experiment. RESULTS: In the current study, we revealed that miR-34a over-expression exacerbated senescence-associated characteristics and impaired glycolytic metabolism. Then we identified hexokinase1 (HK1) as a direct target gene of miR-34a. And HK1 replenishment reversed MSC senescence and reinforced glycolysis. In addition, miR-34a-mediated MSC senescence and lower glycolytic levels were evidently rescued following the co-treatment with HK1 over-expression. CONCLUSION: The miR-34a-HK1 signal axis can alleviate MSC senescence via enhancing glycolytic metabolism, which possibly provides a novel mechanism for MSC senescence and opens up new possibilities for delaying and suppressing the occurrence and development of aging and age-related diseases.


Assuntos
Senescência Celular , Glicólise , Hexoquinase , Células-Tronco Mesenquimais , MicroRNAs , Transdução de Sinais , MicroRNAs/metabolismo , MicroRNAs/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Hexoquinase/metabolismo , Hexoquinase/genética , Humanos
13.
Iran Biomed J ; 28(1): 53-8, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445462

RESUMO

Background: MiR-34a and miR-126 mainly act as tumor suppressors and are often downregulated in various cancers, including non-small cell lung cancer (NSCLC). We aimed to determine the methylation status of miR-34a and miR-126 in NSCLC patients. Methods: The current study included 63 paraffin-embedded NSCLC and paired adjacent normal tissues. After DNA extraction and bisulfite treatment, the methylation status of miR-34a and miR-126 were evaluated using the MSP method. Results: There was no statistically significant difference between tumor and normal tissues regarding the methylation status of miR-34a and miR-126 (p > 0.05). Moreover, we found no significant correlation between the methylation status of miR-34a and miR-126 with patients' demographic parameters, including gender, age, and pathology subtype (p > 0.05). Conclusion: Considering the low expression of mir-126 and mir-34 in NSCLC, more sensitive methods are recommended to be exploited for detecting the level of methylation or underlying mechanisms other than promoter hypermethylation in silencing these genes in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas/genética
14.
Gene ; 912: 148370, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490506

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short, noncoding RNAs with essential roles in cellular pathways and are often associated with various diseases and stress conditions. Recently, they have been discovered in mitochondria, termed "mitomiRs," with unique functions. Mitochondria, crucial organelles for energy production and stress responses, Dysregulated mitomiRs functions and expression has been evident in stress conditions such as cardiovascular and neurodegenerative. In this meta-analysis we have systematically identified miR-34a & miR-146a as possible potential biomarkers for affliction. METHODS: A meta-analysis was conducted to assess the potential role of miR-34a and miR-146a, two specific mitomiRs, as biomarkers in stress-related conditions. The study followed PRISMA guidelines, involving comprehensive database searches in May and September 2023. Twelve studies meeting predefined inclusion criteria were selected, and data analysis included the evaluation of miR-34a and miR-146a expression levels in various stress conditions compared to control groups. We also performed Gene ontology (GO) and Pathway enrichment analysis to observe how mitomiRs affects our body. RESULTS: The meta-analysis revealed a significant increase in overall mitomiRs (miR-34a and miR-146a) expression levels in experimental groups experiencing different stress conditions compared to control groups (Z = 3.54, p < 0.05 using RevMan software). miR-34a demonstrated more pronounced upregulation and exhibited potential as a specific biomarker in certain stress-related conditions (Z = 2.22, p < 0.05). However, miR-146a did not show a significant difference, requiring further investigation in various stress-related contexts. The Analysis indicated a high degree of heterogeneity among the studies. CONCLUSION: This meta-analysis emphasises the importance of mitomiRs, especially miR-34a, as potential biomarkers in the intricate interplay between stress, mitochondrial function, and disease. The study opens new avenues for exploring miRNAs' diagnostic and therapeutic applications in stress-related diseases, highlighting their pivotal role at the crossroads of molecular biology, psychology, and medicine.


Assuntos
Sistema Cardiovascular , MicroRNAs , Biomarcadores/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Regulação para Cima , Humanos
15.
Leuk Lymphoma ; : 1-13, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161195

RESUMO

In chronic lymphocytic leukemia (CLL), TP53 mutations or deletions on chromosome 17p lead to adverse prognosis and reduced levels of miR-34a, which targets NOTCH1. Also, hyperactivated NOTCH1 signaling is crucial for CLL progression. Here we explored the interaction between p53, miR-34a, and NOTCH1 in CLL. We investigated the effect of p53 and miR-34a on NOTCH1 signaling and expression in CLL cells with altered TP53. Our results indicate that miR-34a reduces NOTCH1 3' UTR activity but might not be a mediator between p53 signaling and NOTCH1. p53 activation increases miR-34a expression and NOTCH1 protein levels, correlating with decreased NOTCH1 and miR-34a levels in primary CLL cells with TP53 alterations. Some samples with high NOTCH1 levels presented increased BCL-2, suggesting an anti-apoptotic mechanism of a potentially direct p53-NOTCH1 relation in CLL. This study deepens the understanding of the p53-miR-34a-NOTCH1 signaling network, providing insights that could guide future therapeutic strategies for CLL.

16.
Transl Oncol ; 49: 102083, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128259

RESUMO

BACKGROUND: γ-Glutamylcyclotransferase (GGCT), an enzyme crucial in glutathione metabolism, has emerged as a participant in tumorigenesis. The present study is designed to elucidate the biological role and molecular mechanisms underlying GGCT in glioma. METHODS: Gene Expression Profiling Interactive Analysis (GEPIA), Chinese Glioma Genome Atlas (CGGA), and PrognoScan online databases were utilized to examine the expressions and clinical prognosis of GGCT and REST in glioma. Cell Counting Kit-8 (CCK-8), Transwell, Wound healing, and Flow cytometric assays, and RNA-sequencing analysis were employed to uncover the molecular role of GGCT and REST. Prediction of Differentially expressed microRNA (DE-miRNAs) and miRNAs targeting GGCT 3' Untranslated Region (UTR) was performed using miRanda online datasets. Finally, Real time-quantitative Polymerase Chain Reaction (RT-qPCR), western blot and dual luciferase reporter gene activity analysis were employed to confirm a positive feedback loop involving GGCT/REST/miR-34a-5p in glioma cells. RESULTS: High expression of GGCT was correlated with poor prognosis in glioma. GGCT silencing demonstrated inhibitory effects on the proliferation, migration, and induction of apoptosis in T98G and U251 cells. Mechanistically, GGCT downregulated REST expression and modulated cancer-associated pathways in glioma cells. High expression of REST was associated with poor prognosis in glioma. In vitro and in vivo experiments showed that REST overexpression restored the repression of proliferation, invasion, migration, and xenograft tumor formation induced by GGCT knockdown. Furthermore, the study uncovered that REST inhibited miR-34a-5p mRNA expression, and miR-34a-5p suppressed GGCT expression by targeting its 3'UTR, forming a positive regulatory loop in glioma. Notably, the inhibitor of miR-34a-5p restored the role of REST silencing in decreasing GGCT expression in glioma cells. CONCLUSIONS: GGCT/REST/miR-34a-5p axis holds promising potential as a therapeutic target, offering a potential breakthrough in the treatment of glioma.

17.
Cancer Med ; 13(11): e7387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864479

RESUMO

BACKGROUND: Promising outcomes have been observed in multiple myeloma (MM) with the use of immunotherapies, specifically chimeric antigen receptor T (CAR-T) cell therapy. However, a portion of MM patients do not respond to CAR-T therapy, and the reasons for this lack of response remain unclear. The objective of this study was to investigate the impact of miR-34a on the immunosuppressive polarization of macrophages obtained from MM patients. METHODS: The levels of miR-34a and TLR9 (Toll-like receptor 9) were examined in macrophages obtained from both healthy individuals and patients with MM. ELISA was employed to investigate the cytokine profiles of the macrophage samples. Co-culture experiments were conducted to evaluate the immunomodulatory impact of MM-associated macrophages on CAR-T cells. RESULTS: There was an observed suppressed activation of macrophages and CD4+ T lymphocytes in the blood samples of MM patients. Overexpression of miR-34a in MM-associated macrophages dampened the TLR9 expression and impaired the inflammatory polarization. In both the co-culture system and an animal model, MM-associated macrophages suppressed the activity and tumoricidal effect of CAR-T cells in a miR-34a-dependent manner. CONCLUSION: The findings imply that targeting the macrophage miR-34a/TLR9 axis could potentially alleviate the immunosuppression associated with CAR-T therapy in MM patients.


Assuntos
MicroRNAs , Mieloma Múltiplo , Transdução de Sinais , Receptor Toll-Like 9 , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/metabolismo , MicroRNAs/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Humanos , Animais , Camundongos , Técnicas de Cocultura , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Imunoterapia Adotiva/métodos , Masculino , Feminino , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/genética , Linhagem Celular Tumoral
18.
Int J Biol Macromol ; 275(Pt 2): 133688, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971281

RESUMO

Long noncoding RNAs (lncRNAs) participate in regulating skeletal muscle development. However, little is known about their role in regulating chicken myogenesis. In this study, we identified a novel lncRNA, lncMPD2, through transcriptome sequencing of chicken myoblasts at different developmental stages. Functionally, gain- and loss-of-function experiments showed that lncMPD2 inhibited myoblast proliferation and differentiation. Mechanistically, lncMPD2 directly bound to miR-34a-5p, and miR-34a-5p promoted myoblasts proliferation and differentiation and inhibited the mRNA and protein expression of its target gene THBS1. THBS1 inhibited myoblast proliferation and differentiation in vitro and delayed muscle regeneration in vivo. Furthermore, rescue experiments showed that lncMPD2 counteracted the inhibitory effects of miR-34a-5p on THBS1 and myogenesis-related gene mRNA and protein expression. In conclusion, lncMPD2 regulates the miR-34a-5p/THBS1 axis to inhibit the proliferation and differentiation of myoblasts and skeletal muscle regeneration. This study provides more insight into the molecular regulatory network of skeletal muscle development, identifying novel potential biomarkers for improving chicken quality and increasing chicken yield. In addition, this study provides a potential goal for breeding strategies that minimize muscle damage in chickens.


Assuntos
Diferenciação Celular , Proliferação de Células , Galinhas , MicroRNAs , Desenvolvimento Muscular , Mioblastos , RNA Longo não Codificante , Desenvolvimento Muscular/genética , RNA Longo não Codificante/genética , Animais , MicroRNAs/genética , Diferenciação Celular/genética , Mioblastos/metabolismo , Mioblastos/citologia , Músculo Esquelético/metabolismo , Regeneração/genética
19.
Sci Rep ; 14(1): 17429, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075107

RESUMO

As the important factors in coronary artery thrombosis, endothelial injury and M1 macrophage polarization are closely related to the expression of miR-34a-5p. Exosomes in plasma are mainly derived from platelets and play an important role in thrombosis. Based on these facts, this study was conducted to investigate the acting mechanism of platelet-derived exosomes (PLT-exo) in the effects of endothelial injury and M1 macrophage polarization on coronary artery thrombosis. Firstly, rats were divided into the sham-operated group and the coronary microembolization (CME) group, and their plasma-derived exosomes were extracted to detect the expression of miR-34a-5p. Next, the PLT-exo were extracted from healthy volunteers and then co-cultured with ox-LDL-induced endothelial cells and LPS-induced macrophages, respectively. Subsequently, the expression of IL-1ß, IL-6, TNF-α, and ICAM-1 in endothelial cells was measured, and the level of markers related to M1 macrophage polarization and Sirt1/NF-κB pathway was detected. Finally, the above indicators were examined again after PLT-exo combined with miR-34a-5p mimic were co-cultured with endothelial cells and macrophages, respectively. The results demonstrated that the expression of miR-34a-5p in the CME group was up-regulated compared with the sham-operated group. In cell experiments, PLT-exo modulated the Sirt1/NF-κB pathway by inhibiting the expression of intracellular miR-34a-5p and down-regulated the expression of IL-1ß, IL-6, TNF-α, and ICAM-1 in endothelial cells and M1 macrophage polarization. After the transfection with miR-34a-5p mimic, endothelial cell inflammatory injury and M1 macrophage polarization increased to varying degrees. In conclusion, PLT-exo can alleviate coronary artery thrombosis by reducing endothelial cell inflammation and M1 macrophage polarization via inhibiting miR-34a-5p expression. In contrast, miR-34a-5p overexpression in PLT-exo may exacerbate these pathological injuries in coronary artery thrombosis.


Assuntos
Plaquetas , Células Endoteliais , Exossomos , Inflamação , Macrófagos , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Animais , Macrófagos/metabolismo , Humanos , Plaquetas/metabolismo , Ratos , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Masculino , Células Endoteliais/metabolismo , Trombose Coronária/metabolismo , Trombose Coronária/genética , Trombose Coronária/patologia , Técnicas de Cocultura , Ratos Sprague-Dawley
20.
Adv Healthc Mater ; 13(10): e2303593, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38215360

RESUMO

Current nucleic acid delivery methods have not achieved efficient, non-toxic delivery of miRNAs with tumor-specific selectivity. In this study, a new delivery system based on light-inducible gold-silver-gold, core-shell-shell (CSS) nanoparticles is presented. This system delivers small nucleic acid therapeutics with precise spatiotemporal control, demonstrating the potential for achieving tumor-specific selectivity and efficient delivery of miRNA mimics. The light-inducible particles leverage the photothermal heating of metal nanoparticles due to the local surface plasmonic resonance for controlled chemical cleavage and release of the miRNA mimic payload. The CSS morphology and composition result in a plasmonic resonance within the near-infrared (NIR) region of the light spectrum. Through this method, exogenous miR-34a-5p mimics are effectively delivered to human squamous cell carcinoma TE10 cells, leading to apoptosis induction without adverse effects on untransformed keratinocytes in vitro. The CSS nanoparticle delivery system is tested in vivo in Foxn1nu athymic nude mice with bilateral human esophageal TE10 cancer cells xenografts. These experiments reveal that this CSS nanoparticle conjugates, when systemically administered, followed by 850 nm light emitting diode irradiation at the tumor site, 6 h post-injection, produce a significant and sustained reduction in tumor volume, exceeding 87% in less than 72 h.


Assuntos
Neoplasias Esofágicas , Nanopartículas Metálicas , MicroRNAs , Nanopartículas , Animais , Camundongos , Humanos , Camundongos Nus , Nanopartículas/química , MicroRNAs/genética , Nanopartículas Metálicas/química , Neoplasias Esofágicas/tratamento farmacológico , Ouro/química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa