Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Pulm Med ; 24(1): 173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609925

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) induced by smoking poses a significant global health challenge. Recent findings highlight the crucial role of extracellular vesicles (EVs) in mediating miRNA regulatory networks across various diseases. This study utilizes the GEO database to uncover distinct expression patterns of miRNAs and mRNAs, offering a comprehensive understanding of the pathogenesis of smoking-induced COPD. This study aims to investigate the mechanisms by which extracellular vesicles (EVs) mediate the molecular network of miR-422a-SPP1 to delay the onset of COPD caused by smoking. METHODS: The smoking-related miRNA chip GSE38974-GPL7723 was obtained from the GEO database, and candidate miRs were retrieved from the Vesiclepedia database. Downstream target genes of the candidate miRs were predicted using mRNA chip GSE38974-GPL4133, TargetScan, miRWalk, and RNA22 databases. This prediction was integrated with COPD-related genes from the GeneCards database, downstream target genes predicted by online databases, and key genes identified in the core module of WGCNA analysis to obtain candidate genes. The candidate genes were subjected to KEGG functional enrichment analysis using the "clusterProfiler" package in R language, and a protein interaction network was constructed. In vitro experiments involved overexpressing miRNA or extracting extracellular vesicles from bronchial epithelial cell-derived exosomes, co-culturing them with myofibroblasts to observe changes in the expression levels of the miR-422a-SPP1-IL-17 A regulatory network, and assessing protein levels of fibroblast differentiation-related factors α-SMA and collagen I using Western blot analysis. RESULTS: The differential gene analysis of chip GSE38974-GPL7723 and the retrieval results from the Vesiclepedia database identified candidate miRs, specifically miR-422a. Subsequently, an intersection was taken among the prediction results from TargetScan, miRWalk, and RNA22 databases, the COPD-related gene retrieval results from GeneCards database, the WGCNA analysis results of chip GSE38974-GPL4133, and the differential gene analysis results. This intersection, combined with KEGG functional enrichment analysis, and protein-protein interaction analysis, led to the final screening of the target gene SPP1 and its upstream regulatory gene miR-422a. KEGG functional enrichment analysis of mRNAs correlated with SPP1 revealed the IL-17 signaling pathway involved. In vitro experiments demonstrated that miR-422a inhibition targets suppressed the expression of SPP1 in myofibroblasts, inhibiting differentiation phenotype. Bronchial epithelial cells, under cigarette smoke extract (CSE) stress, could compensate for myofibroblast differentiation phenotype by altering the content of miR-422a in their Extracellular Vesicles (EVs). CONCLUSION: The differential gene analysis of Chip GSE38974-GPL7723 and the retrieval results from the Vesiclepedia database identified candidate miRs, specifically miR-422a. Further analysis involved the intersection of predictions from TargetScan, miRWalk, and RNA22 databases, gene search on COPD-related genes from the GeneCards database, WGCNA analysis from Chip GSE38974-GPL4133, and differential gene analysis, combined with KEGG functional enrichment analysis and protein interaction analysis. Ultimately, the target gene SPP1 and its upstream regulatory gene miR-422a were selected. KEGG functional enrichment analysis on mRNAs correlated with SPP1 revealed the involvement of the IL-17 signaling pathway. In vitro experiments showed that miR-422a targeted inhibition suppressed the expression of SPP1 in myofibroblast cells, inhibiting differentiation phenotype. Furthermore, bronchial epithelial cells could compensate for myofibroblast differentiation phenotype under cigarette smoke extract (CSE) stress by altering the miR-422a content in their extracellular vesicles (EVs).


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/genética , Interleucina-17/genética , MicroRNAs/genética , Osteopontina , Transdução de Sinais , Fumar/efeitos adversos
2.
Cancer Sci ; 114(2): 490-503, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36227125

RESUMO

Competing endogenous RNA (ceRNA)-mediated signaling pathway dysregulation provides great insight into comprehensively understanding the molecular mechanism and combined targeted therapy for glioblastoma. circRNA is characterized by high stability, tissue/developmental stage-specific expression and abundance in brain and plays significant roles in the initiation and progression of cancer. Our previous published data have demonstrated that RPN2 was significantly upregulated in glioma and promoted tumor progression via the activation of the Wnt/ß-catenin pathway. Furthermore, we proved that miR-422a regulated the Wnt/ß-catenin signaling pathway by directly targeting RPN2. In this study, based on the glioblastoma microarray profiles, we identified the upstream circTOP2A, which completely bound to miR-422a and was co-expressed with the RPN2. circTOP2A was significantly overexpressed in glioma and conferred a poor prognosis. circTOP2A could regulate RPN2 expression by sponging miR-422a, verified by western blot, dual-luciferase reporter gene assay, and RNA pull-down assay. Functional assays including CCK8, transwell and FITC-annexin V were performed to explore the RPN2-mediated role of the circTOP2A effect on the glioma malignant phenotype. Additionally, TOP/FOP and immunofluorescence analysis were used to confirm that sh-circTOP2A could suppress the Wnt/ß-catenin pathway partly through RPN2. Finally, a tumor xenograft model was applied to validate the biological function of circTOP2A in vivo. Taken together, our findings reveal the critical role of circTOP2A in promoting glioma proliferation and invasion via a ceRNA mechanism and provide an exploitable biomarker and therapeutic target for glioma patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Hexosiltransferases , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glioblastoma/genética , beta Catenina/genética , Glioma/patologia , Neoplasias Encefálicas/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Via de Sinalização Wnt/genética , Regulação Neoplásica da Expressão Gênica , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
3.
J Transl Med ; 19(1): 451, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715879

RESUMO

BACKGROUND: Hypertrophic scar (HTS) is a fibrotic disorder of skins and may have repercussions on the appearance as well as functions of patients. Recent studies related have shown that competitive endogenous RNA (ceRNA) networks centering around miRNAs may play an influential role in HTS formation. This study aimed to construct and validate a three-miRNA (miR-422a, miR-2116-3p, and miR-3187-3p) ceRNA network, and explore its potential functions. METHODS: Quantitative real­time PCR (qRT­PCR) was used to compare expression levels of miRNAs, lncRNAs, and genes between HTS and normal skin. Target lncRNAs and genes of each miRNA were predicted using starBase as well as TargetScan database to construct a distinct ceRNA network; overlapping target lncRNAs and genes of the three miRNAs were utilized to develop a three-miRNA ceRNA network. For every network, protein-protein interaction (PPI) network analysis was performed to identify its hub genes. For each network and its hub genes, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to explore their possible functions. RESULTS: MiR-422a, miR-2116-3p, and miR-3187-3p were all downregulated in HTS tissues and fibroblasts. MiR-422a-based ceRNA network consisted of 101 lncRNAs with 133 genes; miR-2116-3p-centered ceRNA network comprised 85 lncRNAs and 978 genes; miR-3187-3p-derived ceRNA network encompassed 84 lncRNAs as well as 1128 genes. The three-miRNA ceRNA network included 2 lncRNAs with 9 genes, where MAPK1, FOSL2, ABI2, KPNA6, CBL, lncRNA-KCNQ1OT1, and lncRNA-EBLN3P were upregulated. According to GO and KEGG analysis, these networks were consistently related to ubiquitination. Three ubiquitination-related genes (CBL, SMURF2, and USP4) were upregulated and negatively correlated with the expression levels of the three miRNAs in HTS tissues. CONCLUSIONS: This study identified a three-miRNA ceRNA network, which might take part in HTS formation and correlate with ubiquitination.


Assuntos
Cicatriz Hipertrófica , MicroRNAs , RNA Longo não Codificante , Cicatriz Hipertrófica/genética , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro , Proteases Específicas de Ubiquitina
4.
Cancer Cell Int ; 21(1): 477, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496838

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have been elucidated to participate in the development and progression of various cancers. In this study, we aimed to explore the underlying functions and mechanisms of LINC00958 in colorectal cancer. METHODS: LINC00958 expression in colorectal cancer tissues was examined by qRT-PCR. The correlations between LINC00958 expression and clinical characteristics and prognosis were evaluated. The biological functions of LINC00958 were detected by CCK-8, MTT, colony formation and flow cytometric analyses. RNA pulldown, RIP and luciferase reporter assays were used to confirm the regulatory effects of LINC00958 on miR-422a. Rescue experiments were performed to detect the effects of miR-422a on the roles of LINC00958. RESULTS: LINC00958 was upregulated in colorectal cancer tissues and cell lines. High LINC00958 levels were positively associated with T stage and predicted poor prognosis. Cell experiments showed that LINC00958 promoted cell proliferation and suppressed apoptosis and sensitivity to radiotherapy in vitro and promoted tumor growth in vivo. Bioinformatics analysis predicted the binding site of miR-422a on LINC00958. Mechanistically, RNA pulldown, RIP and luciferase reporter assays demonstrated that LINC00958 specifically targeted miR-422a. In addition, we found that miR-422a suppressed MAPK1 expression by directly binding to the 3'-UTR of MAPK1, thereby inhibiting cell proliferation and enhancing cell apoptosis and radiosensitivity. Furthermore, miR-422a rescued the roles of LINC00958 in promoting MAPK1 expression and cell proliferation and decreasing cell apoptosis and radiosensitivity. CONCLUSIONS: LINC00958 promoted MAPK1 expression and cell proliferation and suppressed cell apoptosis and radiosensitivity by targeting miR-422a, which suggests that it is a potential biomarker for the prognosis and treatment of colorectal cancer.

5.
J Oral Pathol Med ; 50(2): 155-164, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33107637

RESUMO

BACKGROUND: The objective of this study was to clarify the molecular mechanism of amoeboid-to-mesenchymal transition (AMT) of CD44high oral squamous cell carcinoma (OSCC) cells. METHODS: Morphology and expression of mesenchymal genes were investigated in CD44high OSCC cells (CD44high OM-1 cells) cultured on laminin-coated soft silicone gel. Additionally, microarray analysis was performed to investigate microRNA (miRNA) expression inhibited by transforming growth factor-ß1 (TGF-ß1) in CD44high OM-1 cells. RESULTS: When CD44high OM-1 cells were cultured on 2.0-kPa laminin-coated silicone gel, the cells exhibited an amoeboid-like round morphology. Cofilin-1 expression was found in the nucleus and cytoplasm of amoeboid-like CD44high OM-1 cells. The invasive capacity was significantly reduced after Cofilin-1 knockdown. Additionally, Cofilin-1 knockdown cells had an irregularly extended shape. Phosphorylated Cofilin-1 was significantly upregulated by TGF-ß1. Additionally, TGF-ß1 enhanced N-cadherin and Snail mRNA expression and induced a spindle-shaped morphology. ERK1/2 phosphorylation was induced by TGF-ß1. Microarray analysis revealed that miR-422a exhibited the greatest downregulation (fold change: 0.22) in the presence of TGF-ß1. Importantly, TGF-ß1-inhibited miR-422a expression was recovered by the ERK inhibitor or ERK1/2 knockdown. Additionally, miR-422a inhibitor-transfected CD44high OM-1 cells exhibited high N-cadherin and Snail mRNA expression. Furthermore, Cofilin-1 knockdown and miR-422a inhibition induced a spindle cell morphology. CONCLUSION: Cofilin-1 is involved in the invasive ability of CD44high OSCC cells. TGF-ß1 contributes to AMT by downregulation of miR-422a via ERK activation and Cofilin-1 phosphorylation. Our findings suggest that miR-422a and Cofilin-1 play major roles in the maintenance of amoeboid-like CD44high cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Cofilina 1/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal , Humanos , Receptores de Hialuronatos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Fosforilação , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Crescimento Transformador beta1/metabolismo
6.
J Cell Biochem ; 121(1): 322-331, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31297892

RESUMO

Retinoblastoma (RB) is the most common intraocular malignancy in infants and children. S-phase kinase-associated protein 2 (SKP2) has been unmasked as an oncogene in a great many of carcinomas. The biologic function and the detailed molecular mechanism of SKP2 in RB need to be better understood. In this study, real-time quantitative polymerase chain reaction and Western blot showed the ectopic expression of SKP2 in RB tissues and cell lines. Loss of function assays showed the attenuated cell proliferation in RB as a result of SKP2 knockdown. In addition, bioinformatics analysis predicted the interaction between SKP2 and miR-422a. Luciferase reporter assay and Pearson's correlation analysis validated the negative correlation between miR-422a and SKP2. MiR-422a overexpression led to a decline of SKP2 expression and cell growth in RB. The binding capacity between miR-422a and circ_ODC1 was also predicted by bioinformatics analysis. Pearson's correlation analysis and luciferase reporter assay confirmed that circ_ODC1 is negatively correlated with miR-422a. Silencing circ_ODC1 resulted in a rise in miR-422a expression and RB cell growth. Moreover, reduced cell growth was restored by SKP2 overexpression. In a word, SKP2, induced by circ_ODC1 and miR-422a, promotes RB proliferation. Our new findings in this research might expedite the discovery of novel prognostic markers and therapeutic targets of RB.


Assuntos
Transportadores de Ácidos Dicarboxílicos/metabolismo , MicroRNAs/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , RNA Circular/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Proteínas Quinases Associadas a Fase S/metabolismo , Algoritmos , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Biologia Computacional , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Regiões Promotoras Genéticas , Ligação Proteica , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Transfecção , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
7.
Cytogenet Genome Res ; 160(2): 63-71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32092754

RESUMO

DCC netrin 1 receptor (DCC) affects the structure and function of the dopamine circuitry, which in turn affects the susceptibility to developing addiction. In a previous study, we found that single nucleotide polymorphism (SNP) rs12607853 in the 3' untranslated region (3'-UTR) of DCC was significantly associated with heroin addiction. In the current study, we first used bioinformatics prediction to identify the DCC rs12607853 C allele as a potential hsa-miR-422a and hsa-miR-378c target site. We then used vector construction and dual-luciferase reporter assays to investigate the targeting relationship of DCC rs12607853 with hsa-miR-422a and hsa-miR-378c. The dual-luciferase reporter gene assay confirmed that the C allele of rs12607853 in combination with hsa-miR-422a led to repressed dual-luciferase gene expression. Moreover, gene expression assays disclosed that hsa-miR-422a inhibited DCC expression at both the mRNA and protein levels. We also found that morphine inhibited the expression of hsa-miR-422a but increased the expression of DCC mRNA, and this change in the expression of hsa-miR-422a could not be reversed by naloxone, which suggested that the role of DCC in opioid addiction might be regulated by hsa-miR-422a. In summary, this study improves our understanding of the role of hsa-miR-422a and identifies the genetic basis of rs12607853, which might contribute to the discovery of new biomarkers or therapeutic targets for opioid addiction.


Assuntos
Receptor DCC/genética , Receptor DCC/metabolismo , Regulação para Baixo , Dependência de Heroína/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Biologia Computacional/métodos , Regulação para Baixo/efeitos dos fármacos , Células HEK293 , Humanos , Morfina/farmacologia , Naloxona/farmacologia , Polimorfismo de Nucleotídeo Único
8.
Clin Exp Pharmacol Physiol ; 47(7): 1283-1290, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32012318

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a major type of esophageal cancer, accounting for about 90% of cases. Circular RNA UBAP2 (circUBAP2) is involved in the progression of several types of cancers. However, the role of circUBAP2 in ESCC remains unclear. In the present study, circUBAP2 expression was found to be upregulated in ESCC tumour tissues. Knockdown of circUBAP2 through infection with lentiviral vector encoding shRNA targeting circUBAP2 (sh-circUBAP2) inhibited the proliferation, migration and invasion of ESCC cells. In addition, circUBAP2 significantly promoted the proliferation, migration and invasion of ESCC cells. In vivo xenograft assay demonstrated that circUBAP2 downregulation suppressed the tumour growth of ESCC. Further mechanism investigations proved that circUBAP2 exerted its role via sponging microRNA (miR)-422a, and miR-422a directly targeted Rab10 in ESCC cells. These findings suggested that circUBAP2 acted as oncogene through regulating the miR-422a/Rab10 axis in ESCC.


Assuntos
Carcinoma de Células Escamosas do Esôfago/patologia , Técnicas de Silenciamento de Genes , MicroRNAs/genética , RNA Circular/genética , Proteínas rab de Ligação ao GTP/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Invasividade Neoplásica/genética
9.
Acta Biochim Biophys Sin (Shanghai) ; 52(4): 430-438, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32147682

RESUMO

OPA-interacting protein 5 antisense transcript 1 (OIP5-AS1) plays an important regulatory role in various types of cancers. However, the functional role and regulatory mechanisms of OIP5-AS1 in gastric cancer (GC) remain largely unknown. In this study, we found that the expression of OIP5-AS1 was increased in GC tissues compared with that in adjacent non-cancerous tissues, which was significantly associated with shorter overall survival time of patients. In addition, OIP5-AS1 expression was also increased in GC cell lines including NCI-N87, MKN-45, BGC-823 and SGC-7901, when compared with that in normal gastric epithelial cell line GES-1. Knockdown of OIP5-AS1 markedly suppressed the proliferation and colony formation activities of GC cells, induced G0/G1 arrest and apoptosis of GC cells in vitro, and restrained tumor growth in vivo. Mechanistically, OIP5-AS1 functions as an oncogenic competing endogenous RNA by binding to and sequestering miR-422a to elevate the expression of anoctamin-1. Our study first demonstrated that OIP5-AS1 is a critical and powerful regulator of GC pathogenesis and may represent a novel candidate target for GC therapy.


Assuntos
Anoctamina-1/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Idoso , Anoctamina-1/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
10.
Cell Physiol Biochem ; 43(4): 1325-1336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28992617

RESUMO

BACKGROUND/AIMS: Iodine may trigger tumorigenesis and development of thyroid carcinoma, but the mechanisms involved remained elusive. MicroRNA (MiRNAs) are known to be involved in each stage of cancer development; however, the role of miRNAs in iodine-induced tumorigenesis of thyroid carcinoma remained unknown. In this study, we aimed at investigating miRNA related signaling pathway in thyroid cancer cells. METHODS: Levels of miRNAs and mRNAs were determined using RT-qPCR and proteins were quantified by western blotting. Cell migration and proliferation were checked using Transwell assay and CCK8 assay respectively. Tumor xenografts in nude mice were established by subcutaneous injection of cancer cells. RESULTS: Mitogen activated protein kinase 1 (MAPK1) was significantly up-regulated, while miR-422a was down-regulated in thyroid cancer cells cultured with high iodine; miR-422a directly bound to the 3'UTR of MAPK1 mRNA. Moreover, miR-422a negatively regulated MAPK1 expression, and down-regulated miR-422a promoted proliferation and migration of TPC-1 cells. In vivo studies also confirmed that iodine promoted tumor growth by suppressing miR-422a and up-regulating MAPK1. CONCLUSIONS: Our study illustrates a new pathway comprising iodine, miRNA and MAPK1, and defines a novel mechanism in thyroid cancer.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Iodo/metabolismo , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Neoplasias da Glândula Tireoide/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Humanos , Camundongos Nus , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima
11.
Cancer Cell Int ; 17: 91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118671

RESUMO

BACKGROUND: miRNAs are regarded as molecular biomarkers and therapeutic targets for colorectal cancer (CRC), a series of miRNAs have been proven to involve into CRC carcinogenesis, invasion and metastasis. Aberrant miR-422a expression and its roles have been reported in some cancers. However, the function and underlying mechanism of miR-422a in the progression of CRC remain largely unknown. METHODS: Real-time PCR were used to quantify miR-422a expression in CRC tissues. Both vivo and vitro functional assays showed miR-422a inhibits CRC cell proliferation. Target prediction program (miRBase) and luciferase reporter assays were conducted to confirm the target genes AKT1 and MAPK1 of miR-422a. Specimens from 50 patients with CRC were analyzed for the correlation between the expression of miR-422a and the expression of the target genes AKT1 and MAPK1 by real-time PCR. RESULTS: MiR-422a was down­regulated in CRC tissues and cell lines. Ectopic expression of miR-422a inhibited cell proliferation and tumor growth ability; inhibition of endogenous miR-422a, by contrast, promoted cell proliferation and tumor growth ability of CRC cells. MiR-422a directly targets 3'-UTR of the AKT1 and MAPK1, down-regulation of miR-422a led to the activation of Raf/MEK/ERK and PI3K/AKT signaling pathways to promote cell proliferation in CRC. In addition, miR-422a expression was negatively correlated with the expressions of AKT1 and MAPK1 in CRC tissues. CONCLUSION: miR-422a inhibits cell proliferation in colorectal cancer by targeting AKT1 and MAPK1.

12.
Tumour Biol ; 37(3): 3091-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26423405

RESUMO

Osteosarcoma is the most common type of bone cancer in children and adolescents. MicroRNAs (miRNAs) play important roles in the development, differentiation, and function of different cell types and in the pathogenesis of various human diseases. miRNAs are differentially expressed in normal and cancer cells. The investigation of miRNA expression between healthy subjects and patients with osteosarcoma is crucial for future clinical trials. In this study, the expression levels of miRNAs were detected by qRT-PCR. Correlation between expression levels of tow miRNAs and different clinicopathological characteristics were analyzed using the χ (2) test. Survival rate was detected using the log-rank test and Kaplan-Meier method. qRT-PCR was shown that expression levels of miR-29b and miR-422a were strongly decreased in osteosarcoma bone tissue compared with noncancerous bone tissues. Our result indicated that the low expression levels of miR-29b and miR-422a showed strong correlation with large tumor size (P = 0.20; 0.029), advanced TNM stage (P = 0.001; 0.012), distant metastasis (P = 0.008; 0.019), and grade of tumor (P = 0.009; 0.016). Kaplan-Meier survival analysis showed that the low expressions of miR-29b/miR-422a were correlated with shorter time overall survival (log-rank test, P = 0.009; P = 0.013). Moreover, multivariate Cox proportional hazards model indicated that miR-29b and miR-422a (P = 0.024; P = 0.016) were independent prognostic markers of overall survival of patients. Our result indicated that downregulation of miR-29b and miR-422a may be linked to the prediction of poor prognosis, indicating that miR-29b and miR-422a may be a valuable prognostic marker for osteosarcoma patients.

13.
Onco Targets Ther ; 14: 3083-3094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007185

RESUMO

PURPOSE: Long noncoding RNAs are crucial regulators in thyroid cancer progression. However, the role of lncRNA CCDC26 in thyroid cancer remains unclear. Here, we aimed to explore the effect of CCDC26 on thyroid cancer progression and the underlying mechanism. MATERIALS AND METHODS: A total of 50 clinical thyroid cancer samples were studied in patients' samples, cultured cells, and nude mice before and after treatment using quantitative reverse transcription-PCR, CCK-8 assays, BrdU incorporation assays, Transwell assays, cell apoptosis analysis, luciferase reporter gene assay, RNA immunoprecipitation, Western blot analysis, and tumorigenicity analysis. RESULTS: CCDC26 expression was elevated in patients' thyroid cancer tissues and thyroid cancer cell lines. CCDC26 depletion remarkably reduced proliferation, invasion, and migration but induced apoptosis of thyroid cancer cells. Mechanically, miR-422a mimic remarkably reduced the luciferase activity of CCDC26 transfected cells but failed to affect cells transfected with CCDC26 containing the mutated miR-422a-binding site. RNA immunoprecipitation (RIP) assays showed that CCDC26 and miR-422a preferentially interacted with Ago2, but not IgG, in the micro-ribonucleoprotein complexes (miRNPs). CCDC26 depletion enhanced miR-422a expression and MiR-422a inhibitor reversed CCDC26 knockdown-induced inhibition of thyroid cancer progression in vitro. CCDC26 upregulated EZH2 and Sirt6 expression by sponging miR-422a in thyroid cancer cells. Tumorigenicity analysis in nude mice revealed that CCDC26 contributed to thyroid tumor growth via miR-422a/EZH2/Sirt6 axis in vivo. CONCLUSION: CCDC26 promotes thyroid cancer malignant progression via miR-422a/EZH2/Sirt6 axis. This finding provides new insights into the mechanism by which CCDC26 promotes malignant thyroid cancer development, advances our understanding of lncRNAs' association with thyroid cancer, and indicates that CCDC26 and miR-422a may serve as potential targets for thyroid cancer.

14.
Aging (Albany NY) ; 13(18): 22432-22443, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34555810

RESUMO

BACKGROUND: Ovarian carcinoma (OC) is the deadliest gynecologic malignancy in females worldwide. Circular RNA Foxo3 (Foxo3) plays essential roles in various cancers. However, the detailed function of Foxo3 in OC remains unclear. This study aimed to investigate the role of Foxo3 in OC and the underlying molecular mechanism. METHODS: The abundance of Foxo3 was detected in OC cell lines by qPCR. Lentivirus transduction, CCK-8, wound healing assays, transwell migration and invasion assays, luciferase reporter assay, western blotting, fluorescence in situ hybridization (FISH), transmission electron microscopy, nanoparticle tracking analysis, and bioinformatics analysis were performed to investigate the underlying mechanism. RESULTS: The results demonstrated that Foxo3 was significantly upregulated in OC cell lines. Overexpression and knockdown of Foxo3 promoted and inhibited the proliferation, migration, and invasion of OC cells, respectively. Foxo3 could bind to miR-422a to negatively regulate miR-422a expression. Also, proteolipid protein 2 (PLP2) was a targeting gene of miR-422a. Additionally, Foxo3 was highly expressed in exosomes derived from OC cells. Furthermore, Foxo3 could be shuttled to OC cells by exosomes and promoted OC progression. CONCLUSIONS: Foxo3 promoted OC progression through exosome-mediated intercellular interaction to target miR-422a/PLP2 axis. Foxo3 may serve as a potential biomarker for OC.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Exossomos/metabolismo , Proteína Forkhead Box O3/genética , Neoplasias Ovarianas/metabolismo , RNA Circular/metabolismo , Carcinoma Epitelial do Ovário/genética , Biologia Computacional , Feminino , Humanos , Hibridização in Situ Fluorescente , Proteínas com Domínio MARVEL , MicroRNAs , Neoplasias Ovarianas/genética , Proteolipídeos , RNA Circular/genética , Regulação para Cima
15.
Am J Transl Res ; 12(8): 4693-4701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913542

RESUMO

MicroRNAs have been shown to be involved in a variety of different human cancers, including gastric cancer, functioning as post-transcriptional regulators of oncogenes or tumor suppressors. This study aimed to clarify the role of miR-422a in gastric cancer and further elucidate the pathogenesis thereof. To this end, miR-422a expression was initially determined in gastric cancer tissues and cells. Our results showed decreased miR-422a and increased cell division cycle 40 (CDC40) expression in gastric cancer. Dual-luciferase reporter assay further confirmed that miR-422a targeted CDC40. Altogether, this study showed that miR-422a downregulated CDC40, thereby affecting cell cycle progression. Moreover, restoration of miR-422a inhibited gastric cancer cell proliferation. In summary, this study has been the first to show that miR-422a was associated with CDC40 levels in human gastric cancer cells and that disease development may be attributed to CDC40.

16.
Cancer Med ; 9(7): 2480-2490, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32022476

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most deadly cancer worldwide. Multiple long noncoding RNAs (lncRNAs) are recently identified as crucial oncogenic factors or tumor suppressors. In this study, we explored the functon and mechanism of lncRNA double homeobox A pseudogene 8 (DUXAP8) in the progression of HCC. METHODS: Expression levels of DUXAP8 in HCC tissue samples were measured using qRT-PCR. The association between pathological indexes and the expression of DUXAP8 was also analyzed. Human HCC cell lines SMMC-7721 and QSG-7701 were used in in vitro studies. CCK-8 assay was used to assess the effect of DUXAP8 on HCC cell line proliferation. Scratch healing assay and Transwell assay were conducted to detect the effect of DUXAP8 on migration and invasion. Furthermore, dual-luciferase reporter assay was used to confirm targeting relationship between miR-422a and DUXAP8. Additionally, Western blot was used to detect the regulatory function of DUXAP8 on pyruvate dehydrogenase kinase 2 (PDK2). RESULTS: DUXAP8 expression HCC clinical samples was significantly increased and this was correlated with unfavorable pathological indexes. High expression of DUXAP8 was associated with shorter overall survival time of patients. Its overexpression remarkably facilitated the proliferation, metastasis, and epithelial-mesenchymal transition of HCC cells. Accordingly, knockdown of it suppressed the malignant phenotypes of HCC cells. Overexpression of DUXAP8 significantly reduced the expression of miR-422a by sponging it, but enhanced the expression of PDK2. CONCLUSIONS: DUXAP8 was a sponge of tumor suppressor miR-422a in HCC, enhanced the expression of PDK2 indirectly, and functioned as an oncogenic lncRNA.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Longo não Codificante/genética , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
17.
Cells ; 9(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326378

RESUMO

Tobacco smoking is a common risk factor for lung cancer and head and neck cancer. Molecular changes such as deregulation of miRNA expression have been linked to tobacco smoking in both types of cancer. Dysfunction of the Mismatch DNA repair (MMR) mechanism has also been associated with a poor prognosis of these cancers, while a cross-talk between specific miRNAs and MMR genes has been previously proposed. We hypothesized that exposure of lung and head and neck squamous cancer cells (NCI and FaDu, respectively) to tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is capable of altering the expression of MSH2 and MLH1, key MMR components, by promoting specific miRNA deregulation. We found that either a low (1 µM) or high (2 µM) dose of NNK induced significant upregulation of "oncomirs" miR-21 and miR-155 and downregulation of "tumor suppressor" miR-422a, as well as the reduction of MMR protein and mRNA expression, in NCI and FaDu, compared to controls. Inhibition of miR-21 restored the NNK-induced reduced MSH2 phenotype in both NCI and FaDu, indicating that miR-21 might contribute to MSH2 regulation. Finally, NNK exposure increased NCI and FaDu survival, promoting cancer cell progression. We provide novel findings that deregulated miR-21, miR-155, and miR-422a and MMR gene expression patterns may be valuable biomarkers for lung and head and neck squamous cell cancer progression in smokers.


Assuntos
Butanonas/toxicidade , Carcinógenos/toxicidade , Reparo de Erro de Pareamento de DNA/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/genética , MicroRNAs/genética , Nitrosaminas/toxicidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Modelos Biológicos , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Cancer Biol Ther ; 19(5): 436-444, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29509055

RESUMO

OBJECTIVE: This study investigated miR-422a and PLP2 expressions in breast cancer cells and breast cancer stem cells (BCSCs). Besides, their influences on polymorphism changes were observed. METHODS: Flow cytometry and fluorescence-activated cell sorting was performed and CD24-/CD44+ cells were sorted from breast cancer cells and recognized as BCSCs. Microarray was applied to search for the differentially expressed miRNAs and mRNAs between MCF7 and BCSCs. The aberrant expression of miR-422a and PLP2 was further confirmed by RT-qPCR and the direct targeted relationship was verified by dual-luciferase reporter assay. After in vitro transfection, the expression of miR-422a and PLP2 were manipulated and biological functions of BMSCs were compared with CCK-8, colony formation and sphere formation assay. The tumorigenesis ability of transfected BMSCs was also investigated in NOD/SCID tumor mice models. RESULTS: BMSCs were successfully established from MCF7 cells and miR-422a expression was downregulated while PLP2 level decreased in BMSCs. MiR-422a directly targets the 3'UTR of PLP2 and suppressed its expression. Besides, the up-regulation of miR-422a contributed to weakened ability of proliferation and microsphere formation of BMSCs, while PLP2 overexpression facilitated those biological abilities. Tumorigenesis of BMSCs in mice models was impaired by either overexpression of miR-442a or silencing of PLP2. CONCLUSION: Up-regulation of miR-422a attenuated microsphere formation, proliferation and tumor formation of breast cancer stem cells via suppressing the PLP2 expression.


Assuntos
Neoplasias da Mama/patologia , Proteínas com Domínio MARVEL/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Proteolipídeos/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Proteínas com Domínio MARVEL/biossíntese , Proteínas com Domínio MARVEL/genética , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/biossíntese , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Proteolipídeos/biossíntese , Proteolipídeos/genética , Transfecção
19.
Biosci Rep ; 38(2)2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29358307

RESUMO

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. However, the underlying mechanism of osteosarcoma carcinogenesis and progression remains unknown. In the present study, we evaluated the expression profile of miRNAs in osteosarcoma tissues and the adjacent normal tissues. We found that the expression of miR-422a was down-regulated in osteosarcoma tissues and cell lines. In addition, we observed significantly elevated levels of repressive H3K9me3 and H3K27me3 and decreased active H3K4me3 on the promote region of miR-422a in osteosarcoma cells and clinical samples. Furthermore, up-regulation of miR-422a exhibited both in vitro and in vivo anti-tumor effects by inhibiting osteosarcoma cell growth and inducing apoptosis and cell cycle arrest. We also found that miR-422a targeted BCL2L2 and KRAS and negatively regulated their protein expression. Furthermore, restoration of miR-422a and knockdown of BCL2L2 and KRAS promoted apoptosis and induce cell cycle arrest in osteosarcoma cells. Taken together, the present study demonstrates that miR-422a may serve as a tumor suppressor in osteosarcoma via inhibiting BCL2L2 and KRAS translation both in vitro and in vivo Therefore, miR-422a could be developed as a novel therapeutic target in osteosarcoma.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Apoptose , Neoplasias Ósseas/metabolismo , Proliferação de Células , Genes Supressores de Tumor , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/biossíntese , RNA Neoplásico/metabolismo , Proteínas Reguladoras de Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular , Feminino , Humanos , Masculino , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Neoplásico/genética
20.
Mol Ther Nucleic Acids ; 12: 405-419, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195778

RESUMO

Gastric cancer is one of the most prevalent tumor types in the world. Chemotherapy is the most common choice for cancer treatment. However, chemotherapy resistance and adverse side effects limit its clinical applications. Aberrant expression of long noncoding RNAs (lncRNAs) has been found in various stages of gastric cancer development and progression. In this study, we identified that an oncogenic lncRNA, long intergenic non-protein-coding RNA D63785 (lncR-D63785), is highly expressed in gastric cancer tissues and cells. Silencing of lncR-D63785 inhibited cell proliferation, cell migration and invasion in gastric cancer cell lines and reduced tumor volume and size in mice. We found that the expression of lncR-D63785 was inversely correlated with microRNA 422a (miR-422a) expression, which was involved in the downregulation of expression of myocyte enhancer factor-2D (MEF2D) and drug sensitivity. Knockdown of lncR-D63785 increased the expression of miR-422a and the sensitivity of gastric cancer cells to apoptosis induced by the anticancer drug doxorubicin (DOX). This indicates that lncR-D63785 acts as a competitive endogenous RNA (ceRNA) of miR-422a and promotes chemoresistance by blocking miR-422-dependent suppression of MEF2D. Together, our results suggest that the therapeutic suppression of lncR-D63785 alone or in combination with chemotherapeutic agents may be a promising strategy for treating gastric cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa