RESUMO
In the orchestrated environment of the testicular niche, the equilibrium between self-renewal and differentiation of spermatogonial stem cells (SSCs) is meticulously maintained, ensuring a stable stem cell reserve and robust spermatogenesis. Within this milieu, extracellular vesicles, specifically exosomes, have emerged as critical conveyors of intercellular communication. Despite their recognized significance, the implications of testicular exosomes in modulating SSC fate remain incompletely characterized. Given the fundamental support and regulatory influence of Sertoli cells (SCs) on SSCs, we were compelled to explore the role of SC-derived exosomes (SC-EXOs) in the SSC-testicular niche. Our investigation hinged on the hypothesis that SC-EXOs, secreted by SCs from the testes of 5-day-old mice-a developmental juncture marking the onset of SSC differentiation-participate in the regulation of this process. We discovered that exposure to SC-EXOs resulted in an upsurge of PLZF, MVH, and STRA8 expression in SSC cultures, concomitant with a diminution of ID4 and GFRA1 levels. Intriguingly, obstructing exosomal communication in a SC-SSC coculture system with the exosome inhibitor GW4869 attenuated SSC differentiation, suggesting that SC-EXOs may modulate this process via paracrine signaling. Further scrutiny revealed the presence of miR-493-5p within SC-EXOs, which suppresses Gdnf mRNA in SCs to indirectly restrain SSC differentiation through the modulation of GDNF expression-an indication of autocrine regulation. Collectively, our findings illuminate the complex regulatory schema by which SC-EXOs affect SSC differentiation, offering novel perspectives and laying the groundwork for future preclinical and clinical investigations.
Assuntos
Comunicação Autócrina , Diferenciação Celular , Exossomos , Comunicação Parácrina , Células de Sertoli , Espermatogônias , Animais , Masculino , Camundongos , Diferenciação Celular/fisiologia , Exossomos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos Endogâmicos ICR , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismoRESUMO
The hypertrophy and conversion of postnatal muscle fibers largely determine the yield and quality of meat, which is closely related to the economic value of pigs. MicroRNA (miRNA), as a kind of endogenous noncoding RNA molecule, is widely involved in myogenesis of livestock and poultry. The longissimus dorsi tissues of Lantang pigs at 1 and 90 days (LT1D and LT90D) were collected and profiled by miRNA-seq. We found 1871 and 1729 miRNA candidates in LT1D and LT90D samples, and 794 miRNAs were shared. We identified 16 differentially expressed miRNAs between two tested groups and explored the function of miR-493-5p inmyogenesis. The miR-493-5p promoted the proliferation and inhibited the differentiation of myoblasts. Using GO and KEGG analyses of 164 target genes of miR-493-5p, we found that ATP2A2, PPP3CA, KLF15, MED28, and ANKRD17 genes were related to muscle development. RT-qPCR detection showed that the expression level of ANKRD17 was highly expressed in LT1D libraries, and the double luciferase report test preliminarily proved that miR-493-5p and ANKRD17 have a directly targeting relationship. We established miRNA profiles for the longissimus dorsi tissues of 1-day-old and 90-day-old Lantang pigs and found that miR-493-5p was differentially expressed and associated with myogenesis by targeting ANKRD17 gene. Our results should serve as a reference for future studies on pork quality.
Assuntos
MicroRNAs , Suínos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Mioblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Desenvolvimento Muscular/genética , Proliferação de Células/genéticaRESUMO
Tuberculosis (TB) is a fatal infectious disease; however, the molecular mechanisms underlying the pathogenicity of TB remain elusive. The present study aims to identify potential biomarkers associated with Mycobacterium tuberculosis (M.tb) infection by using integrated bioinformatics and in vitro validation studies. GSE50050, GSE78706, and GSE108844 data from the gene expression omnibus (GEO) database were downloaded to identify differentially expressed genes (DEGs). The functions of DEGs were further subjected to gene ontology (GO) and KEGG pathway analysis. The hub genes from the DEGs were determined based on the protein-protein interaction (PPI) network analysis. Finally, the hub genes were experimentally validated using the in vitro functional studies. A total of 26 common DEGs were identified among GSE50050, GSE78706, and GSE108844. The functional enrichment analysis showed that the common DEGs were associated with cytokines response and TB pathways. The PPI network analysis identified nine hub genes. Further in vitro studies showed that nitric oxide synthase 2 (NOS2) was up-regulated in RAW264.7 cells upon lipopolysaccharides (LPS) stimulation, which was accompanied by increased inflammatory cytokines release. Furthermore, NOS2 was found to be a target of miR-493-5p, which was confirmed by luciferase reporter assay. NOS2 was repressed by miR-493-5p overexpression and was up-regulated after miR-493-5p inhibition in RAW264.7 cells. The rescue experiments showed that LPS-induced increase in the inflammatory cytokines of the RAW264.7 cells was significantly attenuated by NOS2 knockdown and miR-493-5p overexpression. Collectively, our results for the first time demonstrated that NOS2/miR-493-5p signaling pathway may potentially involve in the inflammatory response during bacterial infection such as M. tb infection.
Assuntos
MicroRNAs , Tuberculose , Animais , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Tuberculose/metabolismoRESUMO
The role of micro RNAs (miRNAs) in asthma remains unclear. In this study, we examined the role of miRNA in targeting FOXO1 in asthma. Results showed that miR-493-5p was one of the differentially expressed miRNAs in the PBMCs of asthmatic children, and was also associated with Th cell differentiation. The miR-493-5p expression decreased significantly in the OVA-induced asthma mice than the control groups. The miR-493-5p mimic inhibited the expression of the IL-9, IRF4 and FOXO1, while the inhibitor restored these effects. Moreover, the Dual-Luciferase analysis results showed FOXO1 as a novel valid target of miR-493-5p. According to the rescue experiment, miR-493-5p inhibited Th9 cell differentiation by targeting FOXO1. Then the exosomes in association with the pathogenesis of asthma was identified. Various inflammatory cells implicated in asthmatic processes including B and T lymphocytes, DCs, mast cells, and epithelial cells can release exosomes. Our results demonstrated that the DC-derived exosomes can inhibit Th9 cell differentiation through miR-493-5p, thus DC-derived exosomal miR-493-5p/FOXO1/Th9 may serve as a potential therapeutic target in the development of asthma.
Assuntos
Asma , Proteína Forkhead Box O1 , MicroRNAs , Linfócitos T Auxiliares-Indutores , Animais , Camundongos , Asma/genética , Diferenciação Celular , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Interleucina-9/metabolismo , MicroRNAs/genética , Ovalbumina , Linfócitos T Auxiliares-Indutores/metabolismoRESUMO
The mechanism behind the aberrant expression of S100A6 in osteosarcoma is seldom reported so far. This study sought to explore the regulatory axis targeting S100A6 involved in osteosarcoma progression. Clinical samples collected from osteosarcoma patients were used to detect the expressions of SNHG1, miR-493-5p, and S100A6 by western bolt analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of S100A6 on proliferation and osteogenic differentiation were investigated by the CCK-8 assay, colony formation assay, Ethynyl deoxyuridine staining, matrix mineralization assay, and alkaline phosphatase assay. The potential of lncRNAs/miRNAs targeting S100A6 was identified by the bioinformatics approach, and the results were verified by the dual luciferase assay and RNA immunoprecipitation assay. Both and rescue experiments were performed to investigate the regulatory relationship between the identified lncRNAs and S100A6. The results showed that S100A6 is highly expressed in osteosarcoma. S100A6 overexpression not only increases the proliferation but also reduces the osteogenic differentiation of osteosarcoma cells, while S1006A silence exerts the opposite effects. Then, SNHG1 is identified to directly interact with miR-493-5p to attenuate miR-493-5p binding to the 3'-untranslated region of S100A6. Notably, S100A6 silence partially rescues the effect of SNHG1 overexpression on proliferation and osteogenic differentiation of osteosarcoma cells. Furthermore, the suppressive role of SNHG1 silence in the growth of osteosarcoma xenograft tumors is countered by S100A6 overexpression. Collectively, this study reveals that S100A6 plays an important role in osteosarcoma progression, and SNHG1 promotes S100A6 expression by competitively sponging miR-493-5p.
Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/genética , Proteína A6 Ligante de Cálcio S100/genéticaRESUMO
Numerous studies have indicated that microRNAs (miRNAs) play critical roles in the development and progression of cancer. However, how changes to the expression levels of miRNAs in response to dexmedetomidine affects the progression of lung cancer remains poorly understood. In this study, we treated the lung adenocarcinoma cell line-A549 with dexmedetomidine and then examined the changes to the expression levels of miRNAs. We found that one of the most significantly upregulated miRNAs was miR-493-5p, which has an important role in the growth and apoptosis of lung adenocarcinoma (LUAD) cells. In addition, bioinformatics searches and luciferase reporter assays revealed that miR-493-5p targets RASL11B, which has a high degree of similarity to RAS. Finally, database searches revealed that RASL11B is associated with survival of LUAD cells. In conclusion, dexmedetomidine causes changes to the expression levels of miRNAs in LUAD, including significant upregulation of miR-493-5p. MiR-493-5p targets RASL11B, thereby inhibiting cell growth and inducing apoptosis in LUAD.
Assuntos
Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/metabolismo , Dexmedetomidina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Células Tumorais CultivadasRESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) are vital regulators during the biological processes of melanoma. The present study aimed to uncover biological functions of lncRNA termed NR2F1 antisense RNA 1 (NR2F1-AS1) in melanoma and the potential mechanisms. METHODS: Relative levels of NR2F1-AS1 and miR-493-5p in a total of 137 paired primary melanoma tissues and corresponding non-tumor tissues, as well as three melanoma cell lines, were examined by a real-time polymerase chain reaction. The clinical significance of NR2F1-AS1 expression was analyzed statistically. The STAT3 binding motif in the promoter region of NR2F1-AS1 was identified by JASPAR (http://jaspar.genereg.net). The association between STAT3 and NR2F1-AS1 was determined by dual-luciferase reporter and chromatin immunoprecipitation assays. The effects of NR2F1-AS1 on cell proliferation, migration and were measured by cell counting kit-8 (CCK-8), Edu, transwell and wound healing assays. Dual-luciferase reporter and RNA pull-down assays were applied to validate the interaction among NR2F1-AS1, miR-493-5p and GOLM1. Furthermore, in vivo experiments were conducted to demonstrate the oncogenic role of NR2F1-AS1 in melanoma. RESULTS: Up-regulated NR2F1-AS1 and down-regulated miR-493-5p were detected in melanoma tumors and cells. The overexpression of NR2F1-AS1 was induced by STAT3. High NR2F1-AS1 expression was correlated to advanced tumor stage and poor prognosis of melanoma. Functional studies using CCK-8, Edu, transwell and wound healing assays revealed that the proliferative, migratory and invasive capacities of melanoma cells were attenuated by the by inhibition of NR2F1-AS1. Moreover, NR2F1-AS1 was able to up-regulate GOLM1 through recognizing and binding miR-493-5p. Furthermore, knockdown of miR-493-5p distinctly reversed these inhibitory effects of NR2F1-AS1 down-regulation on the tumorigenesis and progression of melanoma. CONCLUSIONS: Our findings demonstrate a key role for NR2F1-AS1 in melanoma progression via targeting miR-493-5p/GOLM1 axis.
Assuntos
Fator I de Transcrição COUP/genética , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Fator de Transcrição STAT3/genética , Fator I de Transcrição COUP/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Longo não Codificante/metabolismo , Transdução de SinaisRESUMO
OBJECTIVE: The proliferation of neural stem cells (NSCs1), or lack thereof, can have profound effects on brain tissue remodeling for ischemic stroke (IS2). In this study, we aimed to reveal the influence of the lncRNA MEG3/miR-493-5p/MIF axis on NSC proliferation after IS. METHODS: We established an oxygen glucose-deprivation/reoxygenation (OGD/R3) in vitro model of IS in NSCs. We evaluated NSC isolation efficiency and proliferation by NESTIN, SOX2, and PCNA immunofluorescence staining. MEG3 and miR-493-5P levels were assessed by quantitative real-time polymerase chain reaction (qRT-PCR4). Changes in MIF protein expression levels were analyzed using Western blotting. We then evaluated the role of MEG3 and miR-493-5p by transfection of si-MEG3, a miR-493-5p mimic, or miR-493-5p inhibitor. NSC proliferation was quantified using Cell Counting Kit-8 analysis. RESULTS: NESTIN and SOX2 were co-expressed in endogenous NSCs. Following OGD/R, MEG3 and miR-493-5P were significantly upregulated in NSCs, while MIF levels decreased and proliferation was inhibited. Knockdown of MEG3 inhibited miR-493-5p and rescued expression of MIF and PCNA, restoring cellular proliferation levels. In NSCs transfected with a miR-493-5p mimic or inhibitor, MIF levels were down- or upregulated, respectively. Consistently, transfection of a miR-493-5p mimic reduced NSC proliferation, while transfection with a miR-493-5p inhibitor or si-MEG3 rescued the inhibitory effect of OGD/R on NSC proliferation. After co-transfection of si-MEG3 and a miR-493-5p mimic of OGD/R-induced NSCs, levels of PCNA, an indicator of cellular proliferation, were significantly reduced. Conclusion MEG3 inhibits NSC proliferation of after IS via positive regulation of miR-493-5p and potential subsequent downregulation of MIF.
Assuntos
Oxirredutases Intramoleculares/genética , AVC Isquêmico/genética , Fatores Inibidores da Migração de Macrófagos/genética , Células-Tronco Neurais/patologia , RNA Longo não Codificante/genética , Animais , Proliferação de Células , Células Cultivadas , Regulação para Baixo , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Regulação para CimaRESUMO
BACKGROUND: Chemoresistance limits the therapeutic effect of cisplatin (DDP) on non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) function as important regulators in chemoresistance. This study aimed to explore the regulation of circRNA Phosphatidylinositol-4-Phosphate 5-Kinase Type 1 Alpha (circ_PIP5K1A) in DDP resistance. METHODS: The expression analysis of circ_PIP5K1A, micoRNA-493-5p (miR-493-5p) and Rho Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1) was conducted through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell sensitivity was determined using 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell proliferation and cell viability were evaluated by colony formation assay and MTT assay, respectively. Cell cycle and apoptosis detection was performed via flow cytometry. Cell motility was examined by transwell migration or invasion assay. Dual-luciferase reporter assay was applied to confirm the target binding. ROCK1 protein level was assayed via Western blot. In vivo assay was carried out using xenograft model in mice. RESULTS: Circ_PIP5K1A level was abnormally increased in DDP-resistant NSCLC tissues and cells. Silencing circ_PIP5K1A reduced DDP resistance, proliferation, cell cycle progression and cell motility in DDP-resistant NSCLC cells. Circ_PIP5K1A directly interacted with miR-493-5p in NSCLC cells. The function of circ_PIP5K1A was dependent on the negative regulation of miR-493-5p. MiR-493-5p directly targeted ROCK1 and circ_PIP5K1A regulated the ROCK1 level via acting as a sponge of miR-493-5p. Overexpression of miR-493-5p inhibited chemoresistance and cancer progression by downregulating ROCK1 expression in DDP-resistant NSCLC cells. Circ_PIP5K1A regulated DDP sensitivity in vivo via the miR-493-5p/ROCK1 axis. CONCLUSION: These findings suggested that circ_PIP5K1A upregulated the ROCK1 expression to promote DDP resistance and cancer progression in NSCLC by sponging miR-493-5p.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , MicroRNAs/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Quinases Associadas a rho/biossíntese , Células A549 , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Circular/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Background: Exosomal microRNAs (miRNAs) in the tumor microenvironment play crucial roles in tumorigenesis and tumor progression by participating in intercellular cross-talk. However, the functions of exosomal miRNAs and the mechanisms by which they regulate esophageal squamous cell carcinoma (ESCC) progression are unclear. Methods: RNA sequencing and GEO analysis were conducted to identify candidate exosomal miRNAs involved in ESCC development. Receiver operating characteristic curve analysis was performed to assess the diagnostic value of plasma exosomal miR-493-5p. EdU, tube formation and Transwell assays were used to investigate the effects of exosomal miR-493-5p on human umbilical vein endothelial cells (HUVECs). A subcutaneous xenograft model was used to evaluate the antitumor effects of miR-493-5p and decitabine (a DNA methyltransferase inhibitor). The relationship between miR-493-5p and SP1/SP3 was revealed via a dual-luciferase reporter assay. A series of rescue assays were subsequently performed to investigate whether SP1/SP3 participate in exosomal miR-493-5p-mediated ESCC angiogenesis. Results: We found that miR-493-5p expression was notably reduced in the plasma exosomes of ESCC patients, which showed the high potential value in early ESCC diagnosis. Additionally, miR-493-5p, as a candidate tumor suppressor, inhibited the proliferation, migration and tube formation of HUVECs by suppressing the expression of VEGFA and exerted its angiostatic effect via exosomes. Moreover, we found that SP1/SP3 are direct targets of miR-493-5p and that re-expression of SP1/SP3 could reverse the inhibitory effects of miR-493-5p. Further investigation revealed that miR-493-5p expression could be regulated by DNA methyltransferase 3A (DNMT3A) and DNMT3B, and either miR-493-5p overexpression or restoration of miR-493-5p expression with decitabine increased the antitumor effects of bevacizumab. Conclusion: Exosomal miR-493-5p is a highly valuable ESCC diagnosis marker and inhibits ESCC-associated angiogenesis. miR-493-5p can be silenced via DNA methylation, and restoration of miR-493-5p expression with decitabine increases the antitumor effects of bevacizumab, suggesting its potential as a therapeutic target for ESCC treatment.
Assuntos
Metilação de DNA , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Exossomos , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Decitabina/farmacologia , Camundongos , Camundongos Nus , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Feminino , AngiogêneseRESUMO
In our previous studies, the results have revealed that circRNA_102046 is significantly upregulated in plasma of patients with ischemic stroke, which closely related to NIHSS score. Human neural stem cells (hNSCs) were used for characterization and subcellular localization of circRNA_102046, and hNSCs OGD/R model was generated. The proliferation of cells was examined by CCK-8 assay. The expression levels of associated molecules were evaluated using RT-qPCR, immunofluorescence staining or western blotting. The binding and co-localization of associated molecules were also evaluated by RIP and FISH assay. Furthermore, MCAO mouse model was established to examine the effects of circRNA_102046 on the progression of ischemic stroke. Expression of circRNA_102046 was detected in the cytoplasma of hNSCs. Then OGD/R cell model was established, where the levels of circRNA_102046 was significantly up-regulated. Furthermore, knockdown of circRNA_102046 was able to enhance the proliferation and differentiation of OGD/R hNSCs. In further downstream molecular studies, the results indicated that circRNA_102046 could participate in the occurrence and development of ischemic stroke through targeting miR-493-5p. In addition, ROCK1 was identified as the putative target of miR-493-5p, and circRNA_102046 regulates the proliferation and differentiation of hNSCs via the miR-493-5p/ROCK1 signaling. More importantly, the infarct volumes of MCAO mice were remarkably reduced after the treatment with sh-circRNA_102046, which also up- and down-regulate the expression of miR-493-5p and ROCK1, respectively. Elucidating this novel pathway provides a theoretical basis for the development of new diagnostic approach and targeted treatment for ischemic stroke.
Assuntos
AVC Isquêmico , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/metabolismo , RNA Circular , Transdução de Sinais , Diferenciação Celular , Quinases Associadas a rho/metabolismoRESUMO
In recent years, the meat and dairy value of buffaloes has become a major concern in buffalo breeding, and the improvement of buffalo beef quality is key to protecting buffalo germplasm resources and solving the problem of beef supply. MiRNAs play a significant role in regulating muscle development. However, the precise mechanism by which they regulate the development of buffalo skeletal muscles remains largely unexplored. In this study, we examined miRNA expression profiles in buffalo myoblasts during the proliferation and differentiation stages. A total of 177 differentially expressed miRNAs were identified, out of which 88 were up-regulated and 89 down-regulated. We focused on a novel miRNA, named bbu-miR-493-5p, that was significantly differentially expressed during the proliferation and differentiation of buffalo myoblasts and highly expressed in muscle tissues. The RNA-FISH results showed that bbu-miR-493-5p was primarily located in the cytoplasm to encourage buffalo myoblasts' proliferation and differentiation. In conclusion, our study lays the groundwork for future research into the regulatory role of miRNAs in the growth of buffalo muscle.
RESUMO
In the current study, we aimed to assess the expression levels of two circulating microRNAs (miRNA) (oar-miR-485-5p and oar-miR-493-5p) in the ovine plasma during the peri-implantation. After mating, we collected the plasma samples from a total of 8 ewes on day 22 of pregnancy (P22; n = 4) and day 22 of the estrous cycle (C22; n=4). We used mature miRNA sequences for oar-miR-485-5p and oar-miR-493-5p out of one hundred fifty, which were retrieved from our microarray results of previous study. We showed that the miRNA expression of oar-miR-485-5p and oar-miR-493-5p were upregulated in P22 (P<0.05) when compared to C22. Those two miRNAs targeted 311 target genes in the peri-implantation period of pregnancy. Furthermore, we revealed 151 GO/pathway terms in biological process (BP) and 25 GO/pathway terms in molecular function (MF), while we demonstrated 13 GO/pathway terms in cellular component (CC). We revealed three hub genes as interleukin 2 (IL2), interleukin 18 (IL18), and C-X-C Motif Chemokine Ligand 10 (CXCL10). In conclusion, both miR-485-5p and oar-miR-493-5p have the potential to be a biomarker to understand peri-implantation of the ovine pregnancy in the aspect of pregnancy-reflected changes in maternal plasma.
RESUMO
Long non-coding RNAs have been demonstrated to promote proliferation and metastasis via regulating the miRNA/mRNA regulatory axis in various malignancies. Based on our preliminary study, we investigated the mechanism of LINC00324 through miR-493-5p/MAPK1 in esophageal squamous cell carcinoma (ESCC) pathogenesis. Herein, we confirmed that LINC00324 is significantly upregulated in ESCC primary cells and esophageal squamous cell carcinoma cell line KYSE-70. Silencing of LINC00324 modulates cell proliferation markers, p21, p27, c-Myc, and Cyclin D1 and epithelial-to-mesenchymal transition markers, slug, snail, ZEB1, vimentin, ZO-1, and E-cadherin protein expression in ESCC. Through bioinformatics and dual luciferase reporter assays, we identified miR-493-5p as the direct target molecule of LINC00324. We further revealed that LINC00324 negatively regulates miR-493-5p expression in ESCC. Moreover, our multiple gain-and loss-of-functional experiments proved that a combination of miR-493-5p and LINC00324 significantly rescued ESCC cell proliferation and metastatic phenotypes. Mechanistically, LINC00324 promotes ESCC pathogenesis by acting as a competing endogenous RNA and sponges miR-493-5p activity thereby activating MAPK1 during ESCC progression. We believe that targeting LINC00324 /miR-493-5p/MAPK1 axis may provide new therapeutic avenues for ESCC.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sistema de Sinalização das MAP Quinases , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Sistema de Sinalização das MAP Quinases/genéticaRESUMO
BACKGROUND: Esophageal cancer (EC) is a highly malignant tumor of the digestive tract. Circular RNAs (circRNAs) have been verified to play a regulatory role in the occurrence and progression of different cancers, including EC. This research aimed to investigate the role and molecular mechanism of circFIG 4 in EC progression. METHODS: The analyses of circFIG 4, miR-493-5p, and neuro-oncological ventral antigen 2 levels were administrated by quantitative real-time polymerase chain reaction. The characteristics of circFIG 4 were determined by Ribonuclease R assay and Actinomycin D assay. Cell proliferation was assessed via colony formation assay and 5-ethynyl-2'-deoxyuridine incorporation assay. Cell cycle distribution and apoptosis were evaluated by flow cytometry. Western blot was performed to assess protein expression. The targeted interaction among circFIG 4, miR-493-5p, and E2F transcription factor 3 (E2F3) were validated using dual-luciferase reporter or RNA immunoprecipitation assays. RESULTS: circFIG 4 was overtly upregulated in EC and was relatively stable in EC cells. circFIG 4 knockdown impeded proliferation, migration, and invasion and expedited apoptosis in EC cells. circFIG 4 served as a miR-493-5p sponge to act in the development of EC. Furthermore, circFIG 4 modulated EC progression via targeting miR-493-5p and miR-493-5p suppressed EC progression via targeting E2F3. circFIG 4 modulated E2F3 expression through acting as a sponge of miR-493-5p. Moreover, circFIG 4 knockdown inhibited EC tumorigenesis by targeting miR-493-5p/E2F3 axis tumor growth in vivo. CONCLUSION: circFIG 4 silence mitigated EC malignant progression at least partly by mediating the miR-493-5p/E2F3 pathway, highlighting new biomarkers and therapeutic targets for EC treatment.
Assuntos
Neoplasias Esofágicas , MicroRNAs , Carcinogênese/genética , Proliferação de Células , Fator de Transcrição E2F3/genética , Neoplasias Esofágicas/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genéticaRESUMO
BACKGROUND: Gliomas is a major challenge of current medical system, and thousands of people are struggling in the pain of this disease worldwide. In the last decade, the functions of miRNAs have been revealed by many studies, and the intervention on miRNA dysfunctions has been thought as a promising way to counter cancer. MiR-493-5p has been identified as a tumor inhibitor to suppress the progressions of several tumors while its role in gliomas remains unknown. Hence, the study investigated the expression levels of miR-493-5p in glioma tissues and cell lines. METHODS: CCK-8 assay, transwell assay and flow cytometry assay were used to observe the effects of miR-493-5p on tumor cells. The downstream targets of miR-493-5p were also searched and verified with online databases and dual-luciferase reporter assay. Moreover, the activities of P53 and PI3K/AKT pathways were also explored by western blot to illustrate the regulation mechanism of miR-493-5p on glioma development. RESULTS: The results showed that miR-493-5p was significantly downregulated in pathological tissues and glioma cell lines, and the increased miR-493-5p effectively inhibited the malignant behavior and promoted the apoptosis of glioma cells. CONCLUSIONS: E2F3 was confirmed as a target of miR-493-5p, and the effects of miR-493-5p on the phenotype of glioma cells could be partly reversed by E2F3. Besides, it was also found that miR-493-5p could effectively suppress the expression of E2F3 and then improve the dysfunctions of the P53 and PI3K/AKT pathways.
Assuntos
Neoplasias Encefálicas/etiologia , Fator de Transcrição E2F3/fisiologia , Glioma/etiologia , MicroRNAs/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Humanos , Transdução de SinaisRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and leads to a high death rate. Research on circular RNAs (circRNAs) suggests that circRNAs are promising biomarkers for cancer treatment. This study aimed to explore the function of a novel circRNA (circ-CSPP1) in HCC. METHODS: Circ-CSPP1 was obtained from the microarray data downloaded from the Gene Expression Omnibus (GEO) database. The expression of circ-CSPP1, miR-493-5p and high mobility group box 1 (HMGB1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation ability, migration and invasion were monitored using cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and transwell assay, respectively. The protein levels of CyclinD1, Vimentin, matrix metallopeptidase 9 (MMP-9) and HMGB1 were detected by western blot. Xenograft models were established to investigate the function of circ-CSPP1 in vivo. The association between miR-493-5p and circ-CSPP1 or HMGB1 was predicted by the online tool starBase and ensured by dual-luciferase reporter assay. RESULTS: The expression of circ-CSPP1 and HMGB1 was elevated, while the expression of miR-493-5p was declined in HCC tissues and cells. Circ-CSPP1 knockdown not only depleted HCC cell proliferation, formation, migration and invasion in vitro but also inhibited tumor growth in vivo. MiR-493-5p was a target of circ-CSPP1, and HMGB1 was a target of miR-493-5p. Rescue experiments presented that miR-493-5p deficiency reversed the effects of circ-CSPP1 knockdown, and HMGB1 overexpression reversed the effects of miR-493-5p restoration. Circ-CSPP1 sponged miR-493-5p to regulate HMGB1 expression. CONCLUSION: Knockdown of circ-CSPP1 suppressed HCC development both in vitro and in vivo by upregulation of miR-493-5p and downregulation of HMGB1, hinting that circ-CSPP1 participated in HCC pathogenesis.
Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA CircularRESUMO
CircPRKDC has been disclosed to participate in the tumorigenesis of serval tumors, but the regulatory mechanisms of circPRKDC in GC are still unknown. CircPRKDC, miR-493-5p, and insulin receptor substrate 2 (IRS2) levels were tested by RT-qPCR. The epithelial-mesenchymal transition (EMT)-related protein levels were evaluated via western blot. The cell viability, migration and invasion were evaluated through CCK-8 and Transwell assays. Luciferase reporter and RIP assays were employed to confirm the binding ability between miR-493-5p and circPRKDC or IRS2. CircPRKDC was upregulated in GC samples, and circPRKDC silencing restrained GC cell viability, metastasis, and EMT and suppressed GC tumor growth. Besides, miR-493-5p was a target of circPRKDC, and the repressive impact of circPRKDC knockdown on GC development was neutralized by miR-493-5p inhibition. Moreover, miR-493-5p targeted IRS2 and IRS2 addition rescued the effects of circPRKDC depletion on GC progression. Finally, circPRKDC knockdown could regulate IRS2 expression by targeting miR-493-5p. These results elaborated that circPRKDC accelerated GC development via sponging miR-493-5p and increasing IRS2, which might provide novel potential targets for GC treatment.
Assuntos
Proteínas Substratos do Receptor de Insulina/genética , MicroRNAs/genética , RNA Circular/genética , Neoplasias Gástricas , Animais , Carcinogênese/genética , Sobrevivência Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/metabolismo , RNA Circular/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologiaRESUMO
Cervical cancer (CC) is one of the most common malignancies among women. It has been demonstrated that long coding RNAs (lncRNAs) play a crucial role in CC. The purpose of this study was to investigate the role of the colon cancer associated transcript 2 (CCAT2) lncRNA in CC and elucidate its possible mechanisms of action. The expression of CCAT2, the miR-493-5p microRNA (miRNA), and mRNA was detected using qRT-PCR. Cell viability, proliferation, and migration and invasion were determined using the MTT, colony formation, and transwell assays, respectively. The interactions between miR-493-5p and CCAT2 or cAMP response element-binding protein 1 (CREB1) were verified using the luciferase and RNA pull-down assays. The effects of CCAT2 knockdown on in vivo tumor growth were determined using tumor xenografts and immunohistochemistry assays. The expression of CCAT2 was upregulated in CC cells and tissues. However, the knockdown of CCAT2 inhibited the proliferation and epithelial-mesenchymal transition (EMT) of CC cells in vitro and suppressed tumor growth in vivo. Mechanistically, CCAT2 functions as a competing endogenous RNA (ceRNA) to upregulate the expression of CREB1 by binding to miR-493-5p. The overexpression of CREB1 or downregulation of miR-493-5p antagonized the effect of CCAT2 knockdown on the proliferation and EMT of CC cells. The knockdown of CCAT2 suppressed the aggressiveness of CC via the miR-493-5p/CREB1 axis. Therefore, CCAT2 is likely to be a promising therapeutic target for CC.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismoRESUMO
BACKGROUND: Long non-coding RNA FGD5 antisense RNA 1 (FGD5-AS1), identified to be a carcinogenic lncRNA, exhibits a regulatory role in some malignancies including non-small cell lung cancer (NSCLC). The aim of the present research is to decipher the function and underlying mechanism of FGD5-AS1 in progression of NSCLC. METHODS: Expression of FGD5-AS1, miR-493-5p and DEAD-box protein 5 (DDX5) in NSCLC tissues and cells was quantified utilizing qRT-PCR. Cell proliferation was assessed by CCK-8 method. Scratch healing test and Transwell assay were used for assaying cell migration and invasion. Expressions of DDX5 and epithelial-mesenchymal transition (EMT)-related proteins were examined by Western blot. Additionally, targeting relationships between FGD5-AS1 and miR-493-5p, miR-493-5p and DDX5 were verified by dual-luciferase reporter gene assay. RESULTS: Expression of FGD5-AS1 in NSCLC tissues and cell lines was up-regulated. Expression of FGD5-AS1 was in association with enlarged tumor size and lymph node metastasis of the patients. Knockdown of FGD5-AS1 led to the inhibition of proliferation, migration, invasion and EMT of NSCLC cells. FGD5-AS1 directly targeted miR-493-5p, while DDX5 was the target of miR-493-5p in NSCLC cells. Additionally, FGD5-AS1 could positively regulate the expression of DDX5 via suppressing miR-493-5p. CONCLUSION: FGD5-AS1 facilitates the proliferation, migration, invasion and EMT of NSCLC cells by sponging miR-493-5p and up-regulating DDX5.