RESUMO
The crosstalk between macrophages and tubular epithelial cells (TECs) actively regulates the progression of renal fibrosis. In the present study, we revealed the significance of circular RNA ACTR2 (circACTR2) in regulating macrophage inflammation, epithelial-mesenchymal transition (EMT) of TECs, and the development of renal fibrosis. Our results showed UUO-induced renal fibrosis was associated with increased inflammation and EMT, hypertrophy of contralateral kidney, up-regulations of circACTR2 and NLRP3, and the down-regulation of miR-561. CircACTR2 sufficiently and essentially promoted the activation of NLRP3 inflammasome, pyroptosis, and inflammation in macrophages, and through paracrine effect, stimulated EMT and fibrosis of TECs. Mechanistically, circACTR2 sponged miR-561 and up-regulated NLRP3 expression level to induce the secretion of IL-1ß. In TECs, IL-1ß induced renal fibrosis via up-regulating fascin-1. Knocking down circACTR2 or elevating miR-561 potently alleviated renal fibrosis in vivo. In summary, circACTR2, by sponging miR-561, activated NLRP3 inflammasome, promoted macrophage inflammation, and stimulated macrophage-induced EMT and fibrosis of TECs. Knocking down circACTR2 and overexpressing miR-561 may, thus, benefit the treatment of renal fibrosis.
Assuntos
Nefropatias , MicroRNAs , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Fibrose , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/patologia , Nefropatias/metabolismo , Macrófagos/metabolismo , Masculino , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Circular/genéticaRESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) regulate tumor development and metastasis in several types of cancers through various molecular mechanisms. However, the biological role of most lncRNAs in pancreatic cancer (PC) remains unclear. Here, we explored the expression, biological functions, and molecular mechanism of LINC01128 in PC. METHODS: Quantitive reverse transcription PCR was used to detect the expression level of LINC01128 in PC tissues and different PC cell lines. A loss-of-function and gain-of-function experiment was used to explore the biological effects of LINC01128 on PC carcinogenesis in vitro and in vivo. Western blot analysis, subcellular fractionation experiment, luciferase reporter gene assay, and MS2-RNA immunoprecipitation experiment were used to study the potential molecular mechanism of LINC01128 during carcinogenesis. RESULTS: The expression of LINC01128 was upregulated in PC tissues and cell lines, and overexpression of LINC01128 was significantly related to the poor prognosis of patients with PC. Furthermore, silencing LINC01128 significantly inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of PC cells in vitro and tumor growth in vivo, while LINC01128 overexpression promoted these processes. Further research showed that LINC01128 acted as a sponge for microRNA miR-561-5p, and lactate dehydrogenase A (LDHA) was the downstream target gene of miR-561-5p. It was also revealed that the expression of miR-561-5p in PC was decreased, and a negative correlation between miR-561-5p and LINC01128 was revealed. Based on rescue experiments, LDHA overexpression partially restored the inhibitory effect of LINC01128 knockdown on proliferation, migration, and invasion of PC cells. CONCLUSIONS: LINC01128 promotes the proliferation, migration, invasion, and EMT of PC by regulating the miR-561-5p/LDHA axis, suggesting LINC01128 may be a new prognostic marker and therapeutic target in PC.
RESUMO
MicroRNAs (miRNAs) are noncoding small RNA molecules that act as decisive roles in cell proliferation and differentiation processes by targeted inhibition of mature mRNA. In this study, miRNAs that are involved in the differentiation of neural stem cells (NSC) from human mesenchymal stem cells (MSC) were completely profiled and identified to elucidate the significant miRNAs responsible for NSC differentiation. Human MSCs were induced with NSC-differentiation cocktail containing epidermal growth factor and fibroblast growth factor under serum-free conditions. The profiling of miRNAs was done using Next-Generation sequencing system. The significant miRNAs that might be involved in the differentiation process were screened. The expression levels of target genes (ARID1A and DUSP16) of miR-561-5p and miR-138-5p were determined using western blot & quantitative PCR respectively. The results could help in developing new strategies towards optimizing the in vitro differentiation of NSCs for potential use in future clinical applications.
Assuntos
Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Células-Tronco Neurais/citologia , Neurogênese , Linhagem Celular , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND/AIMS: Drug resistance remains a main obstacle to the treatment of non- small cell lung cancer (NSCLC). The aim of this study was to identify the expression profiles of microRNAs (miRNAs) in drug-resistant NSCLC cell lines. METHODS: The expression profiles of miRNAs in drug-resistant NSCLC cell lines were examined using miRNA sequencing, and the common dysregulated miRNAs in these cell lines were identified and analyzed by bioinformatics methods. RESULTS: A total of 29 upregulated miRNAs and 36 downregulated miRNAs were found in the drug-resistant NSCLC cell lines, of which 26 upregulated and 36 downregulated miRNAs were found to be involved in the Ras signaling pathway. The expression levels, survival analysis, and receiver operating characteristic curve of the dysregulated miRNAs based on The Cancer Genome Atlas database for lung adenocarcinoma showed that hsa-mir-192, hsa-mir-1293, hsa-mir-194, hsa-mir-561, hsa-mir-205, hsa-mir-30a, and hsa-mir-30c were related to lung cancer, whereas only hsa-mir-1293 and hsa-mir-561 were not involved in drug resistance. CONCLUSION: The results of this study may provide novel biomarkers for drug resistance in NSCLC and potential therapies for overcoming drug resistance, and may also reveal the potential mechanisms underlying drug resistance in this disease.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Transcriptoma , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Gefitinibe/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Transcriptoma/efeitos dos fármacosRESUMO
Thymidylate synthase (TYMS) is involved in the folate metabolism and provision of nucleotides needed for DNA synthesis and repair. Thus, functional genetic variants in TYMS may alter cancer risk. In the study, we evaluated associations of three germline variants (rs2790 A > G, rs16430 6 bp > 0 bp, and rs1059394 C > T) in the predicted miRNA-binding sites of TYMS with risk of sporadic breast cancer in non-Hispanic white women aged ≤ 55. We found that carriers of the rs16430 0 bp variant allele had an increased risk of breast cancer [adjusted odd ratio (OR) = 1.37, 95% confidence interval (CI): 1.08-1.73; P = 0.010], compared with carriers of the 6 bp/6 bp genotype. This increased risk was more evident in older subjects (OR = 1.47, 95% CI = 1.06-2.03, P = 0.022), never smokers (OR = 1.67, 95% CI = 1.23-2.25, P < 0.001), never drinkers (OR = 1.44, 95% CI = 1.01-2.05, P = 0.043), and estrogen receptor-positive patients (OR = 1.46, 95% CI = 1.11-1.92, P = 0.006), regardless of tumor stages. The results are consistent with the functional analyses of rs16430 as previously reported, which showed that the 0 bp allele had a decrease in both luciferase activity by â¼ 70% and mRNA levels by â¼ 50% compared with the 6bp allele. Additionally, the rs16430 variant was predicted to influence the binding activity of miR-561. Taken together, these findings indicate that the TYMS rs16430 may contribute to the etiology of sporadic breast cancer in non-Hispanic white women aged ≤ 55 yr. Further validation in large population-based or cohort studies is needed.
Assuntos
Neoplasias da Mama/genética , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único , Timidilato Sintase/genética , População Branca/genética , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Mama/metabolismo , Neoplasias da Mama/epidemiologia , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Desequilíbrio de Ligação , MicroRNAs/química , MicroRNAs/genética , Pessoa de Meia-Idade , Fatores de Risco , Alinhamento de Sequência , Timidilato Sintase/metabolismoRESUMO
Increasing evidences indicate that circular RNAs (circRNAs) play important roles in regulating gene expressions in various diseases. However, the role of circRNAs in inflammatory response of gouty arthritis remains unknown. This study aims to investigate the role and underlying mechanism of circHIPK3 in inflammatory response of gouty arthritis. Quantitative real-time PCR was used to detect the expressions of circHIPK3, miR-192 and miR-561. Western blot was used to detect the protein levels of TLR4, NLRP3, nuclear factor-κB (NF-κB) related proteins, and Caspase-1. Dual luciferase reporter assay, RNA pull-down assay, and FISH assay were used to confirm the interaction between circHIPK3 and miR-192/miR-561. ELISA was used to detect interleukin (IL)-1ß and tumor necrosis factor (TNF)-α levels. circHIPK3 was elevated in synovial fluid mononuclear cells (SFMCs) from patients with gouty arthritis and monosodium urate (MSU)-stimulated THP-1 cells. circHIPK3 overexpression promoted the inflammatory cytokines levels in MSU-stimulated THP-1 cells, and circHIPK3 silencing obtained the opposite effect. Mechanistically, circHIPK3 sponged miR-192 and miR-561, and subsequently promoted the expressions of miR-192 and miR-561 target gene TLR4 and NLRP3. In vivo experiments confirmed circHIPK3 knockdown suppressed gouty arthritis. circHIPK3 sponges miR-192 and miR-561 to promote TLR4 and NLRP3 expressions, thereby promoting inflammatory response in gouty arthritis.