RESUMO
To investigate the mechanism(s) underlying the expression of primate-specific microRNAs (miRs), we sought DNA regulatory elements and proteins mediating expression of the primate-specific hsa-miR-608 (miR-608), which is located in the SEMA4G gene and facilitates the cholinergic blockade of inflammation by targeting acetylcholinesterase mRNA. 'Humanized' mice carrying pre-miR-608 flanked by 250 bases of endogenous sequences inserted into the murine Sema4g gene successfully expressed miR-608. Moreover, by flanking miR-608 by shortened fragments of its human genome region we identified an active independent promoter within the 150 nucleotides 5' to pre-miR-608, which elevated mature miR-608 levels by 100-fold in transfected mouse- and human-originated cells. This highlighted a regulatory role of the 5' flank as enabling miR-608 expression. Moreover, pull-down of the 150-base 5' sequence revealed its interaction with ribosomal protein L24 (RPL24), implicating an additional mechanism controlling miR-608 levels. Furthermore, RPL24 knockdown altered the expression of multiple miRs, and RPL24 immunoprecipitation indicated that up- or down-regulation of the mature miRs depended on whether their precursors bind RPL24 directly. Finally, further tests showed that RPL24 interacts directly with DDX5, a component of the large microprocessor complex, to inhibit miR processing. Our findings reveal that RPL24, which has previously been shown to play a role in miR processing in Arabidopsis thaliana, has a similar evolutionarily conserved function in miR biogenesis in mammals. We thus characterize a novel extra-ribosomal role of RPL24 in primate miR regulation.
Assuntos
MicroRNAs , Proteínas Ribossômicas , Animais , Humanos , Camundongos , Acetilcolinesterase , MicroRNAs/genética , Primatas , Proteínas Ribossômicas/genéticaRESUMO
Hepatocellular carcinoma (HCC) is the third prominent cause of cancer mortality, with increasing prevalence and poor survival worldwide. Being diagnosed at an advanced stage, HCC frequently results in poor prognosis, treatment failure, and recurrence. Post-treatment reactivation and recurrence often amplify the immunosuppressed state induced by HCC pathogenesis. Therefore, stimulating the immune system may be a potential therapy measure for the treatment of HCC. Immune responses of the body may be potentiated by modulation of various effector cells such as B-cells, T-cells, Treg cells, natural killer cells, dendritic cells, cytotoxic T-lymphocytes, and other antigen-presenting cells. microRNAs (small non-coding RNAs) are the regulators of gene expression via translational inhibition or mRNA degradation. Various activities and developmental stages of the immune system are governed by miRNAs and they have a regulative impact on innate and adaptive immune cells in both, healthy and diseased conditions. Their misexpression has been associated with the initiation, development, and metastasis of various cancer types, including HCC. This review summarizes the functional impact of these immuno-miRNAs in the improvement of tumor conditions.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Linfócitos B/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Células Matadoras Naturais , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismoRESUMO
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA (lncRNA) that is widely expressed in a variety of mammalian cell types. Altered expression levels of the lncRNA NEAT1 have been reported in liver-related disorders including cancer, fatty liver disease, liver fibrosis, viral hepatitis, and hepatic ischemia. lncRNA NEAT1 mostly acts as a competing endogenous RNA (ceRNA) to sponge various miRNAs (miRs) to regulate different functions. In regard to hepatic cancers, the elevated expression of NEAT1 has been reported to have a relation with the proliferation, migration, angiogenesis, apoptosis, as well as epithelial-mesenchymal transition (EMT) of cancer cells. Furthermore, NEAT1 upregulation has contributed to the pathogenesis of other liver diseases such as fibrosis. In this review, we summarize and discuss the molecular mechanisms by which NEAT1 contributes to liver-related disorders including acute liver failure, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, and liver carcinoma, providing novel insights and introducing NEAT1 as a potential therapeutic target in these diseases.
Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , RNA Longo não Codificante , Animais , Humanos , Proliferação de Células/genética , Fibrose , Cirrose Hepática/genética , Mamíferos/genética , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
1. Occupational exposure to 4,4'-methylene diphenyl diisocyanate (MDI) is associated with occupational asthma (OA) development. Alveolar macrophage-induced recruitment of immune cells to the lung microenvironment plays an important role during asthma pathogenesis. Previous studies identified that MDI/MDI-glutathione (GSH)-exposure downregulates endogenous hsa-miR-206-3p/hsa-miR-381-3p. Our prior report shows that alternatively activated (M2) macrophage-associated markers/chemokines are induced by MDI/MDI-GSH-mediated Krüppel-Like Factor 4 (KLF4) upregulation in macrophages and stimulates immune cell chemotaxis. However, the underlying molecular mechanism(s) by which MDI/MDI-GSH upregulates KLF4 remain unclear.2. Following MDI-GSH exposure, microRNA(miR)-inhibitors/mimics or plasmid transfection, endogenous hsa-miR-206-3p/hsa-miR-381-3p, KLF4, or M2 macrophage-associated markers (CD206, TGM2), and chemokines (CCL17, CCL22, CCL24) were measured by either RT-qPCR, western blot, or luciferase assay.3. MDI-GSH exposure downregulates hsa-miR-206-3p/hsa-miR-381-3p by 1.46- to 9.75-fold whereas upregulates KLF4 by 1.68- to 1.99-fold, respectively. In silico analysis predicts binding between hsa-miR-206-3p/hsa-miR-381-3p and KLF4. Gain- and loss-of-function, luciferase reporter assays and RNA-induced silencing complex-immunoprecipitation (RISC-IP) studies confirm the posttranscriptional regulatory roles of hsa-miR-206-3p/hsa-miR-381-3p and KLF4 in macrophages. Furthermore, hsa-miR-206-3p/hsa-miR-381-3p regulate the expression of M2 macrophage-associated markers and chemokines via KLF4.4. In conclusion, hsa-miR-206-3p/hsa-miR-381-3p play a major role in regulation of MDI/MDI-GSH-induced M2 macrophage-associated markers and chemokines by targeting the KLF4 transcript, and KLF4-mediated regulation in macrophages.
Assuntos
Isocianatos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Macrófagos , MicroRNAs , Regulação para Cima , MicroRNAs/metabolismo , MicroRNAs/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Isocianatos/farmacologia , Quimiocinas/metabolismo , Ativação de Macrófagos/efeitos dos fármacosRESUMO
Liver fat storage, also called hepatic steatosis, is increasingly common and represents a very frequent diagnosis in the medical field. Excess fat is not without consequences. In fact, hepatic steatosis contributes to the progression toward liver fibrosis. There are two main types of fatty liver disease, alcoholic fatty liver disease (AFLD) and nonalcoholic fatty liver disease (NAFLD). Although AFLD and NAFLD are similar in their initial morphological features, both conditions involve the same evolutive forms. Moreover, there are various common mechanisms underlying both diseases, including alcoholic liver disease and NAFLD, which are commonalities. In this Review, the authors explore similar downstream signaling events involved in the onset and progression of the two entities but not completely different entities, predominantly focusing on the gut microbiome. Downstream molecular events, such as the roles of sirtuins, cytokeratins, adipokines and others, should be considered. Finally, to complete the feature, some new tendencies in the therapeutic approach are presented.
Assuntos
Fígado Gorduroso Alcoólico , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Fígado , Cirrose Hepática , Transdução de SinaisRESUMO
Chronic migraines have been described chiefly only from a clinical perspective. However, searching for reliable molecular markers has allowed for the discovery of the expression of different genes mainly associated with inflammation, neuro-vascularization, and pain-related pathways. The interest in microRNAs (miRs) that can regulate the expression of these genes has gained significant relevance since multiple miRs could play a key role in regulating these events. In this study, miRs were searched in samples from patients with chronic migraine, and the inclusion criteria were carefully reviewed. Different bioinformatic tools, such as miRbase, targetscan, miRPath, tissue atlas, and miR2Disease, were used to analyze the samples. Our findings revealed that some of the miRs were expressed more (miR-197, miR-101, miR-92a, miR-375, and miR-146b) and less (miR-133a/b, miR-134, miR-195, and miR-340) than others. We concluded that, during chronic migraine, common pathways, such as inflammation, vascularization, neurodevelopment, nociceptive pain, and pharmacological resistance, were associated with this disease.
Assuntos
Biologia Computacional , MicroRNAs , Transtornos de Enxaqueca , Humanos , MicroRNAs/genética , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Biologia Computacional/métodos , Doença Crônica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , FemininoRESUMO
INTRODUCTION: MicroRNAs (miRs) regulate vascular calcification (VC), and their quantification may contribute to suspicion of the presence of VC. METHODS: The study was performed in four phases. Phase 1: miRs sequencing of rat calcified and non-calcified aortas. Phase 2: miRs with the highest rate of change, plus miR-145 [the most abundant miR in vascular smooth muscle cells (VSMCs)], were validated in aortas and serum from rats with and without VC. Phase 3: the selected miRs were analyzed in epigastric arteries from kidney donors and recipients, and serum samples from general population. Phase 4: VSMCs were exposed to different phosphorus concentrations, and miR-145 and miR-486 were overexpressed to investigate their role in VC. RESULTS: miR-145, miR-122-5p, miR-486 and miR-598-3p decreased in the rat calcified aortas, but only miR-145 and miR-486 were detected in serum. In human epigastric arteries, miR-145 and miR-486 were lower in kidney transplant recipients compared with donors. Both miRs inversely correlated with arterial calcium content and with VC (Kauppila index). In the general population, the severe VC was associated with the lowest serum levels of both miRs. The receiver operating characteristic curve showed that serum miR-145 was a good biomarker of VC. In VSMCs exposed to high phosphorus, calcium content, osteogenic markers (Runx2 and Osterix) increased, and the contractile marker (α-actin), miR-145 and miR-486 decreased. Overexpression of miR-145, and to a lesser extent miR-486, prevented the increase in calcium content induced by high phosphorus, the osteogenic differentiation and the loss of the contractile phenotype. CONCLUSION: miR-145 and miR-486 regulate the osteogenic differentiation of VSMCs, and their quantification in serum could serve as a marker of VC.
Assuntos
MicroRNAs , Calcificação Vascular , Animais , Humanos , Ratos , Biomarcadores , Cálcio , MicroRNAs/genética , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteogênese/genética , Fósforo , Calcificação Vascular/genéticaRESUMO
Glioblastoma Multiforme (GBM) is an aggressive brain cancer affecting glial cells and is chemo- and radio-resistant. Glucose is considered the most vital energy source for cancer cell proliferation. During metabolism, hexose molecules will be transported into the cells via transmembrane proteins known as glucose transporter (GLUT). Among them, GLUT-1 and GLUT-3 play pivotal roles in glucose transport in GBM. Knockdown studies have established the role of GLUT-1, and GLUT-3 mediated glucose transport in GBM cells, providing insight into GLUT-mediated cancer signaling and cancer aggressiveness. This review focussed on the vital role of GLUT-1 and GLUT-3 proteins, which regulate glucose transport. Recent studies have identified the role of GLUT inhibitors in effective cancer prevention. Several of them are in clinical trials. Understanding and functional approaches towards glucose-mediated cell metabolism and chromatin epigenetics will provide valuable insights into the mechanism of cancer aggressiveness, cancer stemness, and chemo-resistance in Glioblastoma Multiforme (GBM). This review summarizes the role of GLUT inhibitors, micro-RNAs, and long non-coding RNAs that aid in inhibiting glucose uptake by the GBM cells and other cancer cells leading to the identification of potential therapeutic, prognostic as well as diagnostic markers. Furthermore, the involvement of epigenetic factors, such as microRNAs, in regulating glycolytic genes was demonstrated.
Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Cromatina , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Epigênese Genética , Glucose , Linhagem Celular TumoralRESUMO
In this research communication we compare three different approaches for developing dry matter intake (DMI) prediction models based on milk mid-infrared spectra (MIRS), using data collected from a research herd over five years. In dairy production, knowledge of individual DMI could be important and useful, but DMI can be difficult and expensive to measure on most commercial farms as cows are commonly group-fed. Instead, this parameter is often estimated based on the age, body weight, stage of lactation and body condition score of the cow. Recently, milk MIRS have also been used as a tool to estimate DMI. There are different methods available to create prediction models from large datasets. The main data used were total DMI calculated as a 3-d average, coupled with milk MIRS data available fortnightly. Data on milk yield and lactation stage parameters were also available for each animal. We compared the performance of three prediction approaches: partial least-squares regression, support vector machine regression and random forest regression. The full milk MIRS alone gave low to moderate prediction accuracy (R2 = 0.07-0.40), regardless of prediction modelling approach. Adding more variables to the model improved R2 and decreased the prediction error. Overall, partial least-squares regression proved to be the best method for predicting DMI from milk MIRS data, while MIRS data together with milk yield and concentrate DMI at 3-30 d in milk provided good prediction accuracy (R2 = 0.52-0.65) regardless of the prediction tool used.
RESUMO
Continuum dexterous manipulators (CDMs) are suitable for performing tasks in a constrained environment due to their high dexterity and maneuverability. Despite the inherent advantages of CDMs in minimally invasive surgery, real-time control of CDMs' shape during nonconstant curvature bending is still challenging. This study presents a novel approach for the design and fabrication of a large deflection fiber Bragg grating (FBG) shape sensor embedded within the lumens inside the walls of a CDM with a large instrument channel. The shape sensor consisted of two fibers, each with three FBG nodes. A shape-sensing model was introduced to reconstruct the centerline of the CDM based on FBG wavelengths. Different experiments, including shape sensor tests and CDM shape reconstruction tests, were conducted to assess the overall accuracy of the shape-sensing. The FBG sensor evaluation results revealed the linear curvature-wavelength relationship with the large curvature detection of 0.045 mm and a high wavelength shift of up to 5.50 nm at a 90° bending angle in both the bending directions. The CDM's shape reconstruction experiments in a free environment demonstrated the shape-tracking accuracy of 0.216 ± 0.126 mm for positive/negative deflections. Also, the CDM shape reconstruction error for three cases of bending with obstacles was observed to be 0.436 ± 0.370 mm for the proximal case, 0.485 ± 0.418 mm for the middle case, and 0.312 ± 0.261 mm for the distal case. This study indicates the adequate performance of the FBG sensor and the effectiveness of the model for tracking the shape of the large-deflection CDM with nonconstant-curvature bending for minimally invasive orthopedic applications.
RESUMO
Endothelial dysfunction (ED) causes worse prognoses in heart failure (HF) patients treated with cardiac resynchronization therapy (CRTd). ED triggers the downregulation of microRNA-130 (miR-130a-5p), which targets endothelin-1 (ET-1). Thus, we evaluated ED and the response to CRTd by assessing miR-130a-5p and ET-1 serum levels. We designed a prospective multi-center study with a 1-year follow-up to evaluate ED, ET-1, and miR-130a-5p in CRTd patients with ED (ED-CRTd) vs. patients without ED (NED-CRTd). Clinical outcomes were CRTd response, HF hospitalization, cardiac death, and all-cause death. At 1-year follow-up, NED-CRTd (n = 541) vs. ED-CRTd (n = 326) patients showed better clinical statuses, lower serum values of B type natriuretic peptide (BNP: 266.25 ± 10.8 vs. 297.43 ± 16.22 pg/mL; p < 0.05) and ET-1 (4.57 ± 0.17 vs. 5.41 ± 0.24 pmol/L; p < 0.05), and higher values of miR-130a-5p (0.51 ± 0.029 vs. 0.41 ± 0.034 A.U; p < 0.05). Compared with NED-CRTd patients, ED-CRTd patients were less likely to be CRTd responders (189 (58%) vs. 380 (70.2%); p < 0.05) and had higher rates of HF hospitalization (115 (35.3%) vs. 154 (28.5%); p < 0.05) and cardiac deaths (30 (9.2%) vs. 21 (3.9%); p < 0.05). Higher miR-130a-5p levels (HR 1.490, CI 95% [1.014−2.188]) significantly predicted CRTd response; the presence of hypertension (HR 0.818, CI 95% [0.669−0.999]), and displaying higher levels of ET-1 (HR 0.859, CI 98% [0.839−0.979]), lymphocytes (HR 0.820, CI 95% [0.758−0.987]), LVEF (HR 0.876, CI 95% [0.760−0.992]), and ED (HR 0.751, CI 95% [0.624−0.905]) predicted CRTd non-response. Higher serum miR-130a-5p levels (HR 0.332, CI 95% [0.347−0.804]) and use of ARNI (HR 0.319, CI 95% [0.310−0.572]) predicted lower risk of HF hospitalization, whereas hypertension (HR 1.818, CI 95% [1.720−2.907]), higher BNP levels (HR 1.210, CI 95% [1.000−1.401]), and presence of ED (HR 1.905, CI 95% [1.238−2.241]) predicted a higher risk of HF hospitalization. Hence, serum miR-130a-5p could identify different stages of ED and independently predict CRTd response, therefore representing a novel prognostic HF biomarker.
Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Hipertensão , MicroRNAs , Humanos , Terapia de Ressincronização Cardíaca/efeitos adversos , Estudos Prospectivos , MicroRNAs/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Biomarcadores , Hipertensão/etiologiaRESUMO
Thrombocytes circulate in the blood of nonmammalian vertebrates and are involved in hemostasis; however, many detailed characteristics of thrombocytes remain unclear. Recently, we established an amphibian thrombocyte cell line. Here, we report the finding that thrombocytes produce integrin alpha IIb (CD41)-positive extracellular vesicles (EVs), which include microRNAs (miRs). Flow cytometric analysis showed the expression of CD41+ and phosphatidylserine on the surface of EVs. Nanotracking analysis showed that these CD41+ EVs were approximately 100 nm in diameter. As CD41+ EVs were also observed from African clawed frogs, the production of CD41+ EVs might be common to amphibians. Microarray analysis showed that the CD41+ EVs contain many kinds of miRs. These CD41+ EVs were phagocytosed by endothelial cells and macrophages. qPCR analysis showed that many angiogenesis-related genes were up-regulated in CD41+ EV-treated endothelial cells. Over-expression of some miRs in the CD41+ EVs increased the proliferation of endothelial cells. These results indicated that thrombocytes produced CD41+ EVs, including miRs, that were received by endothelial cells to induce the expression of angiogenesis-related genes. These results indicated that the CD41+ EVs produced from thrombocytes act as signaling molecules to repair damaged blood vessels.
Assuntos
Vesículas Extracelulares , MicroRNAs , Anfíbios , Animais , Plaquetas , Células Endoteliais , MicroRNAs/genéticaRESUMO
Single-nucleotide variant (SNV) is a single base mutation at a specific location in the genome and may play an import role in epilepsy pathophysiology. The aim of this study was to review case-control studies that have investigated the relationship between SNVs within microRNAs (miRs) sequences or in their target genes and epilepsy susceptibility from January 1, 2010 to October 31, 2020. Nine case-control studies were included in the present review. The mainly observed SNVs associated with drug-resistant epilepsy (DRE) risk were SNVs n.60G > C (rs2910164) and n.-411A > G (rs57095329), both located at miR-146a mature sequence and promoter region, respectively. In addition, the CC haplotype (rs987195-rs969885) and the AA genotype at rs4817027 in the MIR155HG/miR-155 tagSNV were also genetic susceptibility markers for early-onset epilepsy. MiR-146a has been observed as upregulated in human astrocytes in epileptogenesis and it regulates inflammatory process through NF-κB signaling by targeting tumor necrosis factor-associated factor 6 (TRAF6) gene. The SNVs rs2910164 and rs57095329 may modify the expression level of mature miR-146a and the risk for epilepsy and SNVs located at rs987195-rs969885 haplotype and at rs4817027 in the MIR155HG/miR-155 tagSNV could interfere in the miR-155 expression modulating inflammatory pathway genes involved in the development of early-onset epilepsy. In addition, SNVs rs662702, rs3208684, and rs35163679 at 3'untranslated region impairs the ability of miR-328, let-7b, and miR-200c binding affinity with paired box protein PAX-6 (PAX6), BCL2 like 1 (BCL2L1), and DNA methyltransferase 3 alpha (DNMT3A) target genes. The SNV rs57095329 might be correlated with DRE when a larger number of patients are evaluated. Thus, we concluded that the main drawback of most of studies is the small number of individuals enrolled, which lacks sample power.
Assuntos
Epilepsia , MicroRNAs , Estudos de Casos e Controles , Epilepsia/genética , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleotídeos , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
OBJECTIVES: We evaluated whether Angiotensin receptor/Neprilysin inhibitors (ARNI) reduce heart failure (HF) hospitalizations and deaths in cardiac resynchronization therapy with defibrillator (CRTd) non-responders patients at 12 months of follow-up, modulating microRNAs (miRs) implied in adverse cardiac remodeling. BACKGROUND: adverse cardiac remodeling characterized by left ventricle ejection fraction (LVEF) reduction, left ventricular end-systolic volume (LVESv) increase, and the 6-minute walking test (6MWT) reduction are relevant pathological mechanisms in CRTd non-responders and could be linked to changes in miRNAs (miRs), regulating cardiac fibrosis, apoptosis, and hypertrophy. METHODS: miRs levels and clinical outcomes (LVEF, cardiac deaths, and 6MWT) were evaluated at baseline and one year of follow-up in CRTd non-responders divided into ARNI-users and Non-ARNI users. RESULTS: At baseline, there were no differences in levels of inflammatory markers, miR-18, miR-145, and miR-181 (p > 0.05) between Non-ARNI users (n 106) and ARNI-users (n 312). At one year of follow-up, ARNI-users vs. Non-ARNI users showed lowest inflammatory markers (p < 0.01) and miR-181 levels (p < 0.01) and higher values of miR-18 (p < 0.01)and miR-145 (p < 0.01). At one year of follow-up, ARNI-users had a higher increase of LVEF (p < 0.01) and 6MWT (p < 0.01) along with a more significant reduction of LVESv (p < 0.01) compared to Non-ARNI users. Cox regression analysis evidenced that ARNI-based therapies increase the probability of anti-remodeling effects of CRTd. Based on symptomatic improvements, echocardiographic and functional classification improvements, 37 (34.9%) patients among ARNI-users became responders, while only twenty (6.4%) patients became responders among Non-ARNi-users. CONCLUSIONS: ARNI might influence epigenetic mechanisms modulating miRs implicated in the adverse cardiac remodeling responses to CRTd.
Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , MicroRNAs , Antagonistas de Receptores de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , Combinação de Medicamentos , Epigênese Genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neprilisina/uso terapêutico , Receptores de Angiotensina/uso terapêutico , Volume Sistólico , Resultado do Tratamento , Remodelação VentricularRESUMO
Obesity is characterized by an elevated amount of fat and energy storage in the adipose tissue (AT) and is believed to be the root cause of many metabolic diseases (MDs). Obesity is associated with low-grade chronic inflammation in AT. Like obesity, chronic inflammation and MDs are prevalent in the elderly. The resident immune microenvironment is not only responsible for maintaining AT homeostasis but also plays a crucial role in stemming obesity and related MDs. Mounting evidence suggests that obesity promotes activation in resident T cells and macrophages. Additionally, inflammatory subsets of T cells and macrophages accumulated into the AT in combination with other immune cells maintain low-grade chronic inflammation. microRNAs (miRs) are small non-coding RNAs and a crucial contributing factor in maintaining immune response and obesity in AT. AT resident T cells, macrophages and adipocytes secrete various miRs and communicate with other cells to create a potential effect in metabolic organ crosstalk. AT resident macrophages and T cells-associated miRs have a prominent role in regulating obesity by targeting several signaling pathways. Further, miRs also emerged as important regulators of cellular senescence and aging. To this end, a clear link between miRs and longevity has been demonstrated that implicates their role in regulating lifespan and the aging process. Hence, AT and circulating miRs can be used as diagnostic and therapeutic tools for obesity and related disorders. In this review, we discuss how miRs function as biomarkers and impact obesity, chronic inflammation, and aging.
RESUMO
BACKGROUND: Chronic low-level inflammation is thought to play a role in many age-related diseases and to contribute to multimorbidity and to the disability related to this condition. In this framework, inflamma-miRs, an important subset of miRNA able to regulate inflammation molecules, appear to be key players. This study aimed to evaluate plasma levels of the inflamma-miR-181a in relation to age, parameters of health status (clinical, physical, and cognitive) and indices of multimorbidity in a cohort of 244 subjects aged 65- 97. METHODS: MiR-181a was isolated from plasma according to standardized procedures and its expression levels measured by qPCR. Correlation tests and multivariate regression analyses were applied on gender-stratified groups. RESULTS: MiR-181a levels resulted increased in old men, and significantly correlated with worsened blood parameters of inflammation (such as low levels of albumin and bilirubin and high lymphocyte content), particularly in females. Furthermore, we found miR-181a positively correlated with the overall multimorbidity burden, measured by CIRS Comorbidity Score, in both genders. CONCLUSIONS: These data support a role of miR-181a in age-related chronic inflammation and in the development of multimorbidity in older adults and indicate that the routes by which this miRNA influence health status are likely to be gender specific. Based on our results, we suggest that miR-181a is a promising biomarker of health status of the older population.
Assuntos
MicroRNAs , Multimorbidade , Idoso , Albuminas , Bilirrubina , Biomarcadores , Feminino , Humanos , Inflamação/diagnóstico , Inflamação/epidemiologia , Masculino , MicroRNAs/genéticaRESUMO
MicroRNAs (miRNAs) are short (21-23 nt) regulatory RNA molecules present in plants and animals which are known for regulating the mRNA target gene expression either by cleavage or translational repression. With the advancements in miRNAs research in plants towards their biogenesis and applications has directed the recent discovery of pri-miRNAs encoding functional peptides or microRNA peptides (miPEPs). These miPEPs are encoded by 5' of pri-miRs containing short ORFs (miORFs). miPEPs are known to enhance the activity of their associated miRNAs by increasing their accumulation and hence downregulating the target genes. Since miPEPs are very specific for each miRNA, they are considered as novel and effective tools for improving traits of interest for plant growth promotion and plant-microbe interaction. Entire peptidome research is the need of the hour. This review thus summarizes recent advancements in miPEP research and its applications as a technology with important agronomical implications with miRNAs augmentation.
Assuntos
MicroRNAs , Animais , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Peptídeos/química , Peptídeos/genética , Plantas/genética , Plantas/metabolismo , ProteômicaRESUMO
The blood transcriptome was examined in relation to disease severity in type I myotonic dystrophy (DM1) patients who participated in the Observational Prolonged Trial In DM1 to Improve QoL- Standards (OPTIMISTIC) study. This sought to (a) ascertain if transcriptome changes were associated with increasing disease severity, as measured by the muscle impairment rating scale (MIRS), and (b) establish if these changes in mRNA expression and associated biological pathways were also observed in the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) microarray dataset in blood (with equivalent MIRS/DMPK repeat length). The changes in gene expression were compared using a number of complementary pathways, gene ontology and upstream regulator analyses, which suggested that symptom severity in DM1 was linked to transcriptomic alterations in innate and adaptive immunity associated with muscle-wasting. Future studies should explore the role of immunity in DM1 in more detail to assess its relevance to DM1.
Assuntos
Distrofia Miotônica , Perfilação da Expressão Gênica , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Qualidade de Vida , Índice de Gravidade de Doença , TranscriptomaRESUMO
There is little known about the prognostic value of serum microRNAs (miRs) in diabetic patients with symptomatic internal carotid artery disease (ICAS) who underwent stent supported angioplasty (PTA) for ICAS. The present study aimed to investigate expression levels of selected miRs for future major adverse cardiac and cerebral events (MACCE) as a marker in diabetic patients following ICAS-PTA. The expression levels of 11 chosen circulating serum miRs were compared in 37 diabetic patients with symptomatic ICAS and 64 control group patients with symptomatic ICAS, but free of diabetes. The prospective median follow-up of 84 months was performed for cardiovascular outcomes. Diabetic patients, as compared to control subjects, did not differ with respect to age (p = 0.159), distribution of gender (p = 0.375), hypertension (p = 0.872), hyperlipidemia (p = 0.203), smoking (p = 0.115), coronary heart disease (p = 0.182), lower extremities arterial disease (LEAD, p = 0.731), and miRs expressions except from lower miR-16-5p (p < 0.001). During the follow-up period, MACCE occurred in 16 (43.2%) diabetic and 26 (40.6%) non-diabetic patients (p = 0.624). On multivariate Cox analysis, hazard ratio (HR) and 95% Confidence Intervals (95%CI) for diabetic patients associated with MACCE were miR-134-5p (1.12; 1.05−1.21, p < 0.001), miR-499-5p (0.16; 0.02−1.32, p = 0.089), hs-CRP (1.14; 1.02−1.28; p = 0.022), prior myocardial infarction (8.56, 1.91−38.3, p = 0.004), LEAD (11.9; 2.99−47.9, p = 0.005), and RAS (20.2; 2.4−167.5, p = 0.005), while in non-diabetic subjects, only miR-16-5p (1.0006; 1.0001−1.0012, p = 0.016), miR-208b-3p (2.82; 0.91−8.71, p = 0.071), and hypertension (0.27, 0.08−0.95, p = 0.042) were associated with MACCE. Our study demonstrated that different circulating miRs may be prognostic for MACCE in diabetic versus non-diabetic patients with symptomatic ICAS. Higher expression levels of miR-134 were prognostic for MACCE in diabetic patients, while higher expression levels of miR-16 were prognostic in non-diabetic patients.
Assuntos
Estenose das Carótidas , MicroRNA Circulante , Diabetes Mellitus , Hipertensão , MicroRNAs , Artérias Carótidas , Estenose das Carótidas/complicações , Estenose das Carótidas/cirurgia , MicroRNA Circulante/genética , Humanos , MicroRNAs/genética , Estudos Prospectivos , Fatores de Risco , Stents/efeitos adversos , Resultado do TratamentoRESUMO
Background and Objectives: Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are rare atypical parkinsonian syndromes, characterized by motor and cognitive symptoms. Their clinical diagnosis is challenging because there are no established biomarkers. Dysregulation of microRNAs (miRNAs/miRs) has been reported to serve an important role in neurodegenerative diseases. However, the miRNA profiles of MSA and PSP patients are rarely reported. The aim of this study was to critically review the role of miRNAs as diagnostic biomarkers to differentiate these atypical parkinsonian disorders and their role in disease pathogenesis. Materials and Methods: A systematic literature search of PubMed was conducted up to February 2022 according the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A total of 15 studies were analyzed. Three studies have shown that miR-9-3p, miR-19a, miR-19b, and miR-24 are potential biomarkers for MSA. In two studies, miR-132 was downregulated, whereas miR-147a and miR-518e were upregulated in the brain tissue of PSP patients. Conclusions: The potential of miRNA is still uncertain as a potential differential diagnostic marker to identify these disorders. Pre-analytical and analytical factors of included studies were important limitations to justify the introduction of miRNAs into clinical practice.