Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837225

RESUMO

Unlike established coating formulations, functional particulate coatings often demand the omission of polymer dispersant so as to retain surface functionality. This results in heterogeneous complex rheology. We take an example from a novel development for an NOx mitigation surface flow filter system, in which ground calcium carbonate (GCC), applied in a coating, reacts with NO2 releasing CO2. Inclusion of mesoporous ancillary mineral acts to capture the CO2. The coating is applied as droplets to maximize gas-contact dynamic by forming a pixelated 2D array using a coating device consisting of protruding pins, which are loaded by submersion in the aqueous coating color such that the adhering droplets are transferred onto the substrate. The flow is driven by surface meniscus wetting causing lateral spread and bulk pore permeation. Filamentation occurs during the retraction of the pins. Stress-related viscoelastic and induced dilatancy in the suspension containing the ancillary mesoporous mineral disrupts processability. Adopting shear, oscillation and extensional rheometric methods, we show that the inclusion of an ancillary mineral that alone absorbs water, e.g., perlite (a naturally occurring porous volcanic glass), is rheologically preferable to one that in addition to absorbing water also immobilizes it on the mineral surface, e.g., sepiolite. When including micro-nanofibrillated cellulose (MNFC), critical for maintaining moisture to support NO2 sorption, it is observed that it acts also as a flow modifier, enabling uniform coating transfer to be achieved, thus eliminating any possible detrimental effect on mineral surface activity by avoiding the use of soluble polymeric dispersant.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014716

RESUMO

The use of micro-/nanofibrillated celluloses (M/NFCs) is often considered for the enhancement of paper properties, while it is still challenging to use them in lower weight gain coatings. This work explores how they might be used on the paper surface to improve the printing quality. In this regard, M/NFCs were produced using different pre-treatment methods, including mechanical (m-MFC), enzymatic (e-MFC), TEMPO-mediated oxidation (t-NFC) and cationization (c-NFC), and uniform coating formulations were developed through the cooking of starch and M/NFCs simultaneously. The formulations, at 6-8% of total solid concentration, were applied to the paper surface by roll coating, resulting in a dry coating weight of 1.5 to 3 g/m2. Besides M/NFCs, other components such as starch betainate (a cationic starch ester; SB), Pluronics® (a triblock co-polymer), precipitated calcium carbonate (PCC) and betaine hydrochloride (BetHCl) were also used in the M/NFC-based coating formulations to observe their combined influence on the printing quality. The presence of M/NFCs improved the paper printing quality, which was further enhanced by the increase in cationic charge density due to the presence of BetHCl/SB, and also by Pluronics®. The cationic charge of c-NFC was also found to be effective for improving the gamut area and optical density of coated papers, whereas whiteness was often reduced due to the quenching of the brightening agent. BetHCl, on the other hand, improved the printing quality of the coated papers, even though it was more effective when combined with M/NFCs, PCC and Pluronics®, and also helped to retain paper whiteness.

3.
Polymers (Basel) ; 13(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34372000

RESUMO

The furnish management of tissue materials is fundamental to obtain maximum quality products with a minimum cost. The key fiber properties and fiber modification process steps have a significant influence on the structural and functional properties of tissue paper. In this work, two types of additives, a commercial biopolymer additive (CBA) that replaces the traditional cationic starch and micro/nanofibrillated cellulose (CMF), were investigated. Different formulations were prepared containing eucalyptus fibers and softwood fibers treated mechanically and enzymatically and both pulps with these two additives incorporated independently and simultaneously with drainage in the tissue process range. The use of these additives to reduce the percentage of softwood fibers on tissue furnish formulations was investigated. The results indicated that a maximum of tensile strength was obtained with a combination of both additives at the expense of softness and water absorbency. With a reduction of softwood fibers, the incorporation of additives increased the tensile strength and water absorbency with a slight decrease in HF softness compared with a typical industrial furnish. Additionally, a tissue computational simulator was also used to predict the influence of these additives on the final end-use properties. Both additives proved to be a suitable alternative to reduce softwood fibers in the production of tissue products, enhancing softness, strength and absorption properties.

4.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202327

RESUMO

The surface of cellulose films, obtained from micro nanofibrillated cellulose produced with different enzymatic pretreatment digestion times of refined pulp, was exposed to gas plasma, resulting in a range of surface chemical and morphological changes affecting the mechanical and surface interactional properties. The action of separate and dual exposure to oxygen and nitrogen cold dielectric barrier discharge plasma was studied with respect to the generation of roughness (confocal laser and atomic force microscopy), nanostructural and chemical changes on the cellulose film surface, and their combined effect on wettability. Elemental analysis showed that with longer enzymatic pretreatment time the wetting response was sensitive to the chemical and morphological changes induced by both plasma gases, but distinctly oxygen plasma was seen to induce much greater morphological change while nitrogen plasma contributed more to chemical modification of the film surface. In this novel study, it is shown that exposure to oxygen plasma, subsequently followed by exposure to nitrogen plasma, leads first to an increase in wetting, and second to more hydrophobic behaviour, thus improving, for example, suitability for printing using polar functional inks or providing film barrier properties, respectively.

5.
Carbohydr Polym ; 238: 116186, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32299573

RESUMO

Micro-nanofibrillated cellulose was prepared using bleached mixed hardwood pulp by a low energy consuming chemo-refining approach having potential to be implemented easily in paper industry. Bleached mixed hardwood pulp was pretreated with sodium meta-periodate and sodium chlorite and micro-nanofibrillated by using refining in Valley beater. Scanning electron microscopy images of prepared micro-nanofibrillated cellulose showed 87 % fibre distribution in nano range, 4.47 ±â€¯0.5 g/g water retention value and 2.13 ±â€¯0.1 meq/100 g carboxyl content. Carboxylation effect of given chemical pretreatment was further confirmed by FTIR analysis. Paper handsheets, having bleached mixed hardwood pulp and prepared micro-nano-fibrillated cellulose, resulted in about 5% lower bulk with 27 %, 32 % and 87 % higher breaking length, burst factor and double fold, respectively than control (without nano-fibrillated cellulose). Prepared micro-nanofibrillated cellulose addition didn't show negative effect on pulp drainability (33 °SR). This work showed that micro-nanofibrillated cellulose might also be prepared using conventional routes of paper industry to improve paper properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa