Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Acta Obstet Gynecol Scand ; 101(12): 1403-1413, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36168933

RESUMO

INTRODUCTION: Our objective was to compare the vaginal microbiome in low-risk and high-risk pregnant women and to explore a potential association between vaginal microbiome and preterm birth. MATERIAL AND METHODS: A pilot, consecutive, longitudinal, multicenter study was conducted in pregnant women at 18-22 weeks of gestation. Participants were assigned to one of three groups: control (normal cervix), pessary (cervical length ≤25 mm) and cerclage (cervical length ≤25 mm or history of preterm birth). Analysis and comparison of vaginal microbiota as a primary outcome was performed at inclusion and at 30 weeks of gestation, along with a follow-up of pregnancy and perinatal outcomes. We assessed the vaginal microbiome of pregnant women presenting a short cervix with that of pregnant women having a normal cervix, and compared the vaginal microbiome of women with a short cervix before and after placement of a cervical pessary or a cervical cerclage. RESULTS: The microbiome of our control cohort was dominated by Lactobacillus crispatus and inners. Five community state types were identified and microbiome diversity did not change significantly over 10 weeks in controls. On the other hand, a short cervix was associated with a lower microbial load and higher microbial richness, and was not correlated with Lactobacillus relative abundance. After intervention, the cerclage group (n = 19) had a significant increase in microbial richness and a shift towards community state types driven by various bacterial species, including Lactobacillus mulieris, unidentified Bifidobacterium or Enterococcus. These changes were not significantly observed in the pessary (n = 26) and control (n = 35) groups. The cerclage group had more threatened preterm labor episodes and poorer outcomes than the control and pessary groups. CONCLUSIONS: These findings indicate that a short cervix is associated with an altered vaginal microbiome community structure. The use of a cerclage for preterm birth prevention, as compared with a pessary, was associated with a microbial community harboring a relatively low abundance of Lactobacillus, with more threatened preterm labor episodes, and with poorer clinical outcomes.


Assuntos
Microbiota , Trabalho de Parto Prematuro , Nascimento Prematuro , Feminino , Recém-Nascido , Gravidez , Humanos , Pessários , Nascimento Prematuro/prevenção & controle , Colo do Útero/diagnóstico por imagem , Medida do Comprimento Cervical
2.
Mol Ecol ; 25(16): 4032-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27284759

RESUMO

Exploring the link between above- and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well-recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field-based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant-associated effects on soil fungal communities are largely guild-specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.


Assuntos
Biodiversidade , Micorrizas/classificação , Microbiologia do Solo , Árvores/microbiologia , Cycadopsida/microbiologia , Magnoliopsida/microbiologia , Minnesota , Filogenia
3.
J Infect Dis ; 210(9): 1431-4, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24795483

RESUMO

The interactions between gastrointestinal parasitic helminths and commensal bacteria are likely to play a pivotal role in the establishment of host-parasite cross-talk, ultimately shaping the development of the intestinal immune system. However, little information is available on the impact of infections by gastrointestinal helminths on the bacterial communities inhabiting the human gut. We used 16S rRNA gene amplification and pyrosequencing to characterize, for the first time to our knowledge, the differences in composition and relative abundance of fecal microbial communities in human subjects prior to and following experimental infection with the blood-feeding intestinal hookworm, Necator americanus. Our data show that, although hookworm infection leads to a minor increase in microbial species richness, no detectable effect is observed on community structure, diversity or relative abundance of individual bacterial species.


Assuntos
Trato Gastrointestinal/microbiologia , Microbiota , Necator americanus , Necatoríase/microbiologia , Animais , Fezes/microbiologia , Fezes/parasitologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/parasitologia , Humanos , Microbiota/fisiologia , Necatoríase/imunologia
4.
Sci Total Environ ; 945: 174007, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885710

RESUMO

Climate warming poses a serious threat to soil biodiversity and crop yield. Application of organic fertilizer has been extensively practiced to improve soil health and crop productivity. However, information is limited about the effects of organic fertilizer on microbial communities and diversity (richness) under warming. Thus, to investigate the interactive effects of temperature (ambient temperature and warming) and fertilizer (chemical fertilizer and partial substitution of chemical fertilizer with organic fertilizer) on microbial properties and wheat yield, a two-factorial pot experiment was conducted using soils with high and low fertility The results showed that warming and organic fertilizer had minor effects on bacterial Shannon and Simpson indexes. Due to concomitant reductions in soil moisture, warming decreased the average Chao index by 5.4 % and Ace index by 3.8 % for soils with high and low fertility (P < 0.05). High-throughput sequence presented that dominated genus was Bacillus with spore-forming ability. Under warming and drying conditions, microbes with adaptive traits (spore-forming ability) would outcompete the other microbes, and decrease microbial Chao and Ace index (richness). However, organic fertilizer counteracted the adverse effects of warming on microbial richness attributed to positive interaction between temperature and fertilizer on soil nutrients and organic carbon. The strong relationships between bacterial richness and wheat yield, as well as soil nutrients, highlighted the importance of soil biodiversity in improving soil nutrients and crop productivity. Partial substitution of chemical fertilizer with organic fertilizer significantly increased wheat yield by 27.1 % and 14.9 % under ambient temperature and by 28.0 % and 19.6 % under warming for soils with high and low fertility, respectively. Overall, this study provided the possibility to increase bacterial richness related to nutrient turnover and crop production by organic fertilizer application with reduced chemical fertilizer, especially under climate warming.


Assuntos
Fertilizantes , Microbiologia do Solo , Solo , Triticum , Triticum/microbiologia , Solo/química , Biodiversidade , Aquecimento Global , Microbiota , Bactérias , Agricultura/métodos
5.
Chemosphere ; 318: 137924, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682633

RESUMO

Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.


Assuntos
Ecossistema , Solo , Solo/química , Microbiologia do Solo , Plantas , Mudança Climática
6.
PeerJ ; 11: e14683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684671

RESUMO

Bacteria, inhabiting around and in plant roots, confer many beneficial traits to promote plant growth and health. The secretion of root exudates modulates the nutritional state of the rhizosphere and root area, further selecting specific bacteria taxa and shaping the bacteria communities. Many studies of the rhizosphere effects have demonstrated that selection by the plant rhizosphere consistently enriches a set of bacteria taxa, and this is conserved across different plant species. Root selection effects are considered to be stronger than the rhizosphere selection effects, yet studies are limited. Here, we focus on the root selection effects across a group of 11 stress-resistant plant species. We found that the root selection consistently reduced the alpha diversity (represented by total number of observed species, Shannon's diversity, and phylogenetic diversity) and altered the structure and composition of bacteria communities. Furthermore, root selection tended to enrich for clusters of bacteria genera including Pantoea, Akkermansia, Blautia, Acinetobacter, Burkholderia-Paraburkholderia, Novosphingobium, Massilia, Pseudomonas, Chryseobacterium, and Stenotrophomonas. Our study offers some basic knowledge for understanding the microbial ecology of the plant root, and suggests that several bacteria genera are of interest for future studies.


Assuntos
Burkholderia , Microbiota , Microbiologia do Solo , Filogenia , Raízes de Plantas/microbiologia , Plantas
7.
Indian J Microbiol ; 52(4): 544-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24293708

RESUMO

Microbial diversity of 1,000 m deep pelagic sediment from off Coast of Andaman Sea was analyzed by a culture independent technique, bacterial tag encoded FLX titanium amplicon pyrosequencing. The hypervariable region of small subunit ribosomal rRNA gene covering V6-V9, was amplified from the metagenomic DNA and sequenced. We obtained 19,271 reads, of which 18,206 high quality sequences were subjected to diversity analysis. A total of 305 operational taxonomic units (OTUs) were obtained corresponding to the members of firmicutes, proteobacteria, plantomycetes, actinobacteria, chloroflexi, bacteroidetes, and verucomicrobium. Firmicutes was the predominant phylum, which was largely represented with the family bacillaceae. More than 44 % of sequence reads could not be classified up to the species level and more than 14 % of the reads could not be assigned to any genus. Thus, the data indicates the possibility for the presence of uncultivable or unidentified novel bacterial species. In addition, the community structure identified in this study significantly differs with other reports from marine sediments.

8.
Genes (Basel) ; 13(6)2022 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-35741812

RESUMO

Marine biofilms are a collective of microbes that can grow on many different surfaces immersed in marine environments. Estimating the microbial richness and specificity of a marine biofilm community is a challenging task due to the high complexity in comparison with seawater. Here, we compared the resolution of full-length 16S rRNA gene sequencing technique of a PacBio platform for microbe identification in marine biofilms with the results of partial 16S rRNA gene sequencing of traditional Illumina PE250 platform. At the same time, the microbial richness, diversity, and composition of adjacent seawater communities in the same batch of samples were analyzed. Both techniques revealed higher species richness, as reflected by the Chao1 index, in the biofilms than that in the seawater communities. Moreover, compared with Illumina sequencing, PacBio sequencing detected more specific species for biofilms and less specific species for seawater. Members of Vibrio, Arcobacter, Photobacterium, Pseudoalteromonas, and Thalassomonas were significantly enriched in the biofilms, which is consistent with the previous understanding of species adapted to a surface-associated lifestyle and validates the taxonomic analyses in the current study. To conclude, the full-length sequencing of 16S rRNA genes has probably a stronger ability to analyze more complex microbial communities, such as marine biofilms, the species richness of which has probably been under-estimated in previous studies.


Assuntos
Biofilmes , Genes de RNAr , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
9.
Environ Technol ; 43(20): 3149-3160, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33840369

RESUMO

The competition between sulfate-reducing bacteria and methane-producing archaea has a major influence on organic matter removal, as well as the success of sulfidogenic systems. This study investigated the performance of six batch sulfidogenic reactors in response to different COD/sulfate ratios (1.0 and 2.0) and electron donors (cheese whey, ethanol, and sodium lactate) by evaluating the biochemical mechanisms of sulfate reduction, organic matter oxidation, and microbial structure modification. A COD/sulfate ratio of 1.0 resulted in high sulfidogenic activity for all electron donors, thereby achieving a nearly 80% sulfate removal. Lactate provided high sulfate removal rates at COD/sulfate ratios of 1.0 (80%) and 2.0 (90%). A COD/sulfate ratio of 2.0 decreased the sulfate removal rates by 25 and 28% when ethanol and cheese whey were used as substrates. The sulfate-reducing bacteria populations increased using ethanol and lactate at a COD/sulfate ratio of 1.0. Particularly, Desulfovibrio, Clostridium, and Syntrophobacter were predominant. Influent composition and COD/sulfate ratio influenced the relative abundance of the microbial communities. Therefore, controlling these parameters may facilitate the wastewater treatment with high sulfate levels through bacterial activity.


Assuntos
Reatores Biológicos , Ácido Láctico , Reatores Biológicos/microbiologia , Elétrons , Etanol , Sulfatos/química , Eliminação de Resíduos Líquidos/métodos
10.
Sci Total Environ ; 815: 152737, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998753

RESUMO

Soil microbial richness, diversity, and functional gene abundance are crucial factors affecting belowground ecosystem functions; however, there is still a lack of systematic understanding of their responses to global change. Here, we conducted a worldwide meta-analysis using 1071 observation data concerning the effects of global change factors (GCFs), including warming (W), increased precipitation (PPT+), decreased precipitation (PPT-), elevated CO2 concentration (eCO2), and nitrogen deposition (N), to evaluate their individual, combined, and interactive effects on soil microbial properties across different groups and ecosystems. Across the dataset, eCO2 increased microbial richness and diversity by 40.5% and 4.6%, respectively; warming and N addition decreased the abundance of denitrification functional genes (nirS, nirK, and nozS); N addition had a greater impact on soil C-cycling functional genes than on N-cycling ones. Long-term precipitation change was conducive to the increase in soil microbial richness, and fungal richness change was more sensitive than bacterial richness, but the sensitivity of bacteria richness to N addition was positively correlated with experimental duration. Soil microbial richness, diversity, and functional gene abundances could be significantly affected by individual or multiple GCF changes, and their interactions are mainly additive. W×eCO2 on microbial diversity, and N×PPT+ and W×N on N-cycling functional gene abundance showed synergistic interactions. Based on the limitations of the collected data and the findings, we suggest designing experiments with multiple GCFs and long experimental durations and incorporating the effects and interactions of multiple drivers into ecosystem models to accurately predict future soil microbial properties and functions under future global changes.


Assuntos
Ecossistema , Solo , Bactérias/genética , Nitrogênio , Microbiologia do Solo
11.
Microorganisms ; 10(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35456884

RESUMO

Soil salinity is a serious problem for agriculture in coastal regions. Nevertheless, the effects of soil salinity on microbial community composition and their metabolic activities are far from clear. To improve such understanding, we studied microbial diversity, community composition, and potential metabolic activity of agricultural soils covering non-, mild-, and severe-salinity. The results showed that salinity had no significant effect on bacterial richness; however, it was the major driver of a shift in bacterial community composition and it significantly reduced microbial activity. Abundant and diverse of microbial communities were detected in the severe-salinity soils with an enriched population of salt-tolerant species. Co-occurrence network analysis revealed stronger dependencies between species associated with severe salinity soils. Results of microcalorimetric technology indicated that, after glucose amendment, there was no significant difference in microbial potential activity among soils with the three salinity levels. Although the salt prolonged the lag time of microbial communities, the activated microorganisms had a higher growth rate. In conclusion, salinity shapes soil microbial community composition and reduces microbial activity. An addition of labile organic amendments can greatly alleviate salt restrictions on microbial activity, which provides new insight for enhancing microbial ecological functions in salt-affected soils.

12.
Animals (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611752

RESUMO

In dogs, the use of probiotics for preventive or therapeutic purposes has become increasingly common, however the evidence for beneficial effects are often limited. The aim of this study was to investigate the effects of feeding a diet containing Enterococcus faecium NCIMB 10415 on faecal quality, faecal short-chain fatty acid concentrations, serum concentrations of cholesterol, triglycerides, cobalamin and folate as well as faecal microbiome in adult dogs. Eleven healthy client owned dogs were enrolled in a randomized, double-blinded crossover study. All dogs were fed the same balanced diet with or without incorporation of Enterococcus faecium NCIMB 10415 for 16 days each. Blood and faecal samples were collected at baseline and during the feeding trial and owners recorded daily faecal scores. An Enterococcus spp. ASV, likely representing E. faecium NCIMB 10415 was detected in the faecal microbiome of some dogs 18-19 days after withdrawal of oral supplementation. Inclusion of E. faecium decreased circulating cholesterol (p = 0.008) compared to baseline. There were no differences in cholesterol concentrations between diets. Owners reported 0.6 ± 0.3) days less of loose stools compared to the control diet. Comparing to baseline, both diets significantly increased faecal concentration of acetate and butyrate, decreased serum cobalamin and increased faecal microbial diversity. Decreased serum cobalamin, and increased faecal acetate correlated with decreases in the Fusobacterium, Streptococcus, Blautia, and Peptoclostridium. Except for effects on circulating cholesterol and faecal score, effects were observed regardless of the addition of E. faecium. It is therefore likely that these effects can be contributed to dietary prebiotic effects on the faecal microbiome.

13.
Environ Technol ; 42(3): 366-376, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31172887

RESUMO

The performance, pollutant removal rate, microbial community and enzymatic activity of a sequencing batch reactor (SBR) were investigated under oxide nanoparticles (Al2O3 NPs) stress. Al2O3 NPs at 0-50 mg/L showed no evident impact on the COD and NH4 + removals of SBR. The oxygen-uptake rate, nitrifying rate and nitrite-reducing rate slightly diminished with the increase of Al2O3 NPs concentration. Compared with 0 mg/L Al2O3 NPs, the dehydrogenase activity declined by 23.52% at 50 mg/L Al2O3 NPs. The activities of ammonia monooxygenase, nitrite oxidoreductase and nitrite reductase decreased with the increase of Al2O3 NPs concentration from 0 to 50 mg/L Al2O3 NPs. However, the nitrate reductase (NR) activity slightly increased at 5 and 15 mg/L Al2O3 NPs and declined at 30 and 50 mg/L Al2O3 NPs. The microbial reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release merely raised 14.80% and 20.72% at 50 mg/L Al2O3 NPs by contrast with 0 mg/L Al2O3 NPs, respectively. Al2O3 NPs enhanced the production, protein content and polysaccharide content of extracellular polymeric substances owing to preventing the microbes from Al2O3 NPs biotoxicity. The existence of Al2O3 NPs led to the variations of microbial richness and diversity in the SBR due to their biotoxicity.


Assuntos
Microbiota , Nanopartículas , Óxido de Alumínio , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas/química , Nitrogênio/análise , Fósforo , Esgotos , Eliminação de Resíduos Líquidos
14.
Sci Total Environ ; 754: 142077, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911148

RESUMO

The in-situ advanced anaerobic digestion (AAD) enhanced with zero-valent iron powder (ZVI) under mesophilic condition was investigated to remove 5 antibiotics (sulfamerazine (SMR), sulfamethoxazole (SMZ), ofloxacin (OFL), tetracycline (TC), and roxithromycin (ROX)) and 11 antibiotic resistance genes (ARGs) (AAC (6')-IB-CR, qnrS, ermF, ermT, ermX, sul1, sul2, sul3, tetA, tetB, and tetG) in sewage sludge. The effects of different ZVI dosages, antibiotic concentrations, and solid retention time (SRTs) on the removal were explored. Also, the correlation coefficient of antibiotics and ARGs, microbial community structure, biogas production and methane yield were analyzed. All conducted treatments operated stably, and the modified Gompertz model described the cumulative methane yield well. The antibiotics, with the exception of OFL, were effectively removed in the sewage sludge at a dosage of 1000 mg/L ZVI, SRT 20 d, and an antibiotic concentration of 20 µg/L during AAD. The removal rates of SMZ, SMR, TC, and ROX reached 97.39%, 74.54%, 78.61%, and 56.58%, respectively. AAC (6')-IB-CR and tetB could be effectively reduced during the in-situ AAD. Through the redundancy analysis, AAC (6')-IB-CR, ermT, ermX, sul2, tetB, and tetG had strong positive correlations with the antibiotics in the reactor. The principle component analysis revealed that the community structure was similar when the SRT was 10 d and 20 d at the same amount of ZVI and antibiotic concentrations in the sludge. Under the operating parameters of 1000 mg/L ZVI dosage, SRT 20 d, and an antibiotic concentration of 20 µg/L, Erysipelotrichia, Verrucomicrobia, Clostridia, Caldiserica, and Alphaproteobacteria of the class were dominated microorganisms in the anaerobic digestion.


Assuntos
Ferro , Esgotos , Anaerobiose , Antibacterianos , Resistência Microbiana a Medicamentos/genética
15.
Sci Total Environ ; 727: 138571, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32335452

RESUMO

The performance, microbial enzymatic activities and the microbial community of sequencing batch reactors (SBRs) were evaluated under the single and combined nickel (Ni2+) at 20 mg/L and cadmium (Cd2+) at 10 mg/L. The single and combined Ni2+ and Cd2+ had no adverse impacts on the COD removal, whereas the NH4+-N removal efficiency declined sharply from about 99% to 34.42% and 42.67% under the single Ni2+ and combined Ni2+ and Cd2+. Compared with the absence of Ni2+ or Cd2+, the specific oxygen uptake rate (SOUR), ammonia-oxidizing rate (SAOR), nitrite-oxidizing rate (SNOR), nitrite-reducing rate (SNIRR) and nitrate-reducing rate (SNRR) declined by 24.09%, 56.63%, 51.50%, 58.01% and 52.09% under the combined Ni2+ and Cd2+, which were slower than the sum of those under single Ni2+ and Cd2+. The dehydrogenase, ammonia monooxygenase, nitrite oxidoreductase, nitrate reductase and nitrite reductase activities showed the similar varying trends to the SOUR, SAOR, SNOR, SNIRR and SNRR, suggesting that the combined Ni2+ and Cd2+ displayed antagonistic inhibition on the nitrogen removal rates and microbial enzyme activities. The combined Ni2+ and Cd2+ declined the microbial diversity and richness less than the sum of those under single Ni2+ and Cd2+. The relative abundance of Nitrosomonas, Nitrospira and identified denitrifying bacteria displayed some changes under single and combined Ni2+ and Cd2+. These findings would contribute to better understand the combined impacts of multiple heavy metals on biological wastewater treatment systems.


Assuntos
Cádmio , Microbiota , Reatores Biológicos , Níquel , Nitrogênio/análise , Esgotos , Águas Residuárias
16.
Chemosphere ; 249: 126165, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32078852

RESUMO

The performance, microbial community and enzymatic activity of activated sludge from four identical sequencing batch reactors (SBRs) were compared by treating synthetic wastewater under the single and combined divalent copper (Cu2+) at 20 mg/L and humic acid (HA) at 20 mg/L. Compared with the absence of Cu2+ and HA, the single HA slightly enhanced the oxygen uptake rate (OUR), the nitrification and denitrification rates and the activities of dehydrogenase, nitrifying enzymes and denitrifying enzymes, whereas the single Cu2+ had the opposite results. The combined Cu2+ and HA inhibited the OUR, nitrogen removal rate and enzymatic activity of activated sludge almost the same as the single Cu2+. The single HA had no obvious effect on the balance between the microbial oxidative stress and antioxidant activity. However, the variations of microbial reactive oxygen species production, peroxidase activity, catalase activity, superoxide dismutase activity, and lactate dehydrogenase release demonstrated that the combined Cu2+ and HA and single Cu2+ produced obvious toxicity to microorganisms in activated sludge. The microbial richness and diversity had some obvious changes under the single and combined Cu2+ and HA. The relative abundances of Nitrosomonas, Nitrospira and some denitrifying genera (e.g. Zoogloea, Dokdonella, Denitratisoma, Flavobacterium and Thermomonas) under the combined Cu2+ and HA were less than those under the single Cu2+.


Assuntos
Cobre/toxicidade , Microbiota/efeitos dos fármacos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Bactérias , Reatores Biológicos/microbiologia , Desnitrificação , Nitrificação , Nitrogênio/análise , Nitrosomonas , Oxirredução , Esgotos/microbiologia , Águas Residuárias
17.
Front Microbiol ; 10: 2604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803153

RESUMO

Cultivation of medicinal and aromatic plants (MAPs) is persistently increasing due to excessive demands of naturals. Agricultural land and its microbial diversity are primarily adapted to conventional crops, and introduction of MAP and their continuous monocropping may disturb the ecological stability of soil microbiome. Here, the effect of cultivation of MAPs on soil microbial diversity was studied. The aim of the study is to examine the effects of cultivation of MAPs on the possible shift in soil microbial diversity and to restore such impacts by using organic amendments or intercropping. Terminal restriction fragments polymorphism (TRFLP) and next-generation sequencing (NGS) studies showed that of the various selected MAPs, maximal modulation in the soil microbial diversity patterns was noticed in fields of Mentha arvensis and Artemisia annua, and the traces of essential oil/phytochemicals were detected in bulk and rhizospheric soil. In both Artemisia- and Mentha-cultivated soil, the total operating taxonomic unit (OTU) declined in both bulk and rhizospheric soil in comparison to control (Zea mays), but the bacterial richness of Mentha soil was slightly higher than that of control. However, cultivation of Mentha improved the evenness of the microbial community. The inclusion of crops like Sesbania and Chlorophytum and the application of vermicompost (VC) enhanced the microbial richness and evenness, thereby restoring the soil microbial state shift and resulting in higher productivity in the continuously Mentha cropped field. Our study concludes that long-term cultivation of some MAPs may affect the richness but promote the evenness of microbial diversity. The state shift could be restored to some extent, and crop productivity could be enhanced by the inclusion of selected crops and organic manures in cropping systems.

18.
Mol Biochem Parasitol ; 233: 111222, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31541662

RESUMO

The gastrointestinal (GI) tract of vertebrates is inhabited by a vast array of organisms, i.e., the microbiota and macrobiota. The former is composed largely of commensal microorganisms, which play vital roles in host nutrition and maintenance of energy balance, in addition to supporting the development and function of the vertebrate immune system. By contrast, the macrobiota includes parasitic helminths, which are mostly considered detrimental to host health via a range of pathogenic effects that depend on parasite size, location in the GI tract, burden of infection, metabolic activity, and interactions with the host immune system. Sharing the same environment within the vertebrate host, the GI microbiota and parasitic helminths interact with each other, and the results of such interactions may impact, directly or indirectly, on host health and homeostasis. The complex relationships occurring between parasitic helminths and microbiota have long been neglected; however, recent studies point towards a role for these interactions in the overall pathophysiology of helminth disease, as well as in parasite-mediated suppression of inflammation. Whilst several discrepancies in qualitative and quantitative modifications in gut microbiota composition have been described based on host and helminth species under investigation, we argue that attention should be paid to the systems biology of the gut compartment under consideration, as variations in the abundances of the same population of bacteria inhabiting different niches of the GI tract may result in varying functional consequences for host physiology.


Assuntos
Trato Gastrointestinal , Helmintos , Microbiota , Ancylostomatoidea/parasitologia , Animais , Ascaris/parasitologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Intestino Grosso/microbiologia , Intestino Grosso/parasitologia , Intestino Delgado/microbiologia , Intestino Delgado/parasitologia , Lactobacillus/imunologia , Nematoides/parasitologia , Platelmintos/parasitologia , Schistosoma/parasitologia , Estômago/microbiologia , Estômago/parasitologia , Strongyloides stercoralis/parasitologia , Trematódeos/parasitologia , Trichuris/parasitologia
19.
Bioresour Technol ; 225: 377-385, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27956330

RESUMO

The performance and microbial community of activated sludge from a sequencing batch reactor (SBR) were investigated under long-term exposure of magnetic Fe3O4 nanoparticles (Fe3O4 NPs). The COD removal showed a slight decrease at 5-60mg/L Fe3O4 NPs compared to 0mg/L Fe3O4 NPs, whereas the NH4+-N removal had no obvious variation at 0-60mg/L Fe3O4 NPs. It was found that 10-60mg/L Fe3O4 NPs improved the denitrification process and phosphorus removal of activated sludge. The microbial enzymatic activities of activated sludge could be affected by Fe3O4 NPs, which had similar variation trends to the nitrogen and phosphorus removal rates of activated sludge. The reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release demonstrated that Fe3O4 NPs led to the toxicity to activated sludge and destroyed the integrity of microbial cytomembrane. High throughput sequencing indicated that Fe3O4 NPs could obviously affect the microbial richness and diversity of activated sludge.


Assuntos
Reatores Biológicos/microbiologia , Nanopartículas de Magnetita/química , Consórcios Microbianos/fisiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/instrumentação , Desnitrificação , Óxido Ferroso-Férrico/química , L-Lactato Desidrogenase/metabolismo , Nanopartículas de Magnetita/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/isolamento & purificação , Fósforo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Eliminação de Resíduos Líquidos/métodos
20.
Parasit Vectors ; 9(1): 625, 2016 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-27912797

RESUMO

BACKGROUND: Investigations of the relationships between the gut microbiota and gastrointestinal parasitic nematodes are attracting growing interest by the scientific community, driven by the need to better understand the contribution of parasite-associated changes in the composition of the gut flora to both host malnutrition and immune modulation. These studies have however been carried out mainly in humans and experimental animals, while knowledge of the make-up of the gut commensal flora in presence or absence of infection by parasitic nematodes in domestic animals is limited. In this study, we investigate the qualitative and quantitative impact that infections by a widespread parasite of cats (i.e. Toxocara cati) exert on the gut microbiota of feline hosts. METHODS: The faecal microbiota of cats with patent infection by T. cati (= Tc+), as well as that of negative controls (= Tc-) was examined via high-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, followed by bioinformatics and biostatistical analyses of sequence data. RESULTS: A total of 2,325,366 useable high-quality sequences were generated from the faecal samples analysed in this study and subjected to further bioinformatics analyses, which led to the identification of 128 OTUs and nine bacterial phyla, respectively. The phylum Firmicutes was predominant in all samples analysed (mean of 53.0%), followed by the phyla Proteobacteria (13.8%), Actinobacteria (13.7%) and Bacteroidetes (10.1%). Among others, bacteria of the order Lactobacillales, the family Enterococcaceae and genera Enterococcus and Dorea showed a trend towards increased abundance in Tc+ compared with Tc- samples, while no significant differences in OTU richness and diversity were recorded between Tc+ and Tc- samples (P = 0.485 and P = 0.581, respectively). However, Canonical Correlation and Redundancy Analyses were able to separate samples by infection status (P = 0.030 and P = 0.015, respectively), which suggests a correlation between the latter and the composition of the feline faecal microbiota. CONCLUSIONS: In spite of the relatively small number of samples analysed, subtle differences in the composition of the gut microbiota of Tc+ vs Tc- cats could be identified, some of which in accordance with current data from humans and laboratory animal hosts. Nevertheless, the findings from this study contribute valuable knowledge to the yet little explored area of parasite-microbiota interactions in domestic animals.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Enteropatias Parasitárias/veterinária , Toxocaríase/microbiologia , Animais , Bactérias/genética , Gatos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fezes/microbiologia , Enteropatias Parasitárias/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa