Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 117(4): 959-970, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427157

RESUMO

The haematophagous females of the cleg fly Haematopota pandazisi (Kröber) (Diptera: Tabanidae) are a common pest in areas inhabited by wild and domestic ungulates in southern Europe, North Africa and Anatolia. A morphological investigation by scanning electron microscopy (SEM) was carried out for the first time on the antennae of females of H. pandazisi, with special attention to the type and distribution of sensilla and microtrichia. The typical brachyceran antenna is divided into three regions: the scape, the pedicel and the flagellum, which is the longest of the three and is composed of four flagellomeres. The scape and pedicel are characterized by only one type of microtrichium and chaetic sensillum, whereas five types of microtrichia and sensilla were identified on the flagellum and classified according to shape and distribution. The sensilla are of the chaetic, clavate, basiconic, trichoid and coeloconic types; the latter with either a basiconic or grooved peg inside. The results obtained in this study were compared to those found in other species in the family Tabanidae and other Diptera, with special attention to haematophagous species.


Assuntos
Dípteros/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Sensilas/ultraestrutura , Animais , Animais Domésticos/parasitologia , Membrana Celular/ultraestrutura , Europa (Continente) , Feminino , Sensilas/anatomia & histologia
2.
J Insect Sci ; 162016.
Artigo em Inglês | MEDLINE | ID: mdl-27030395

RESUMO

Here, we describe a nano-scale surface structure on the rat-tailed maggot, the aquatic larva of the Drone fly Eristalis tenax(L.). Larvae of this syrphid hover fly live in stagnant, anaerobic water-courses that are rich in organic matter. The larvae burrow into fetid slurry and feed on microorganisms which they filter out from the organic material. This environment is rich in bacteria, fungi and algae with the capacity to form biofilms that might develop on the larval surface and harm them. Using transmission and scanning electron microscopy we have identified an array of slender (typically < 100 nm in diameter) nanopillars that cover the surface of the larvae. The high density and dimensions of these spine-like projections appear to make it difficult for bacteria to colonize the surface of the animal. This may interfere with the formation of biofilms and potentially act as a defence against bacterial infection.


Assuntos
Dípteros/ultraestrutura , Animais , Organismos Aquáticos/fisiologia , Organismos Aquáticos/ultraestrutura , Biofilmes , Dípteros/fisiologia , Larva/fisiologia , Larva/ultraestrutura , Microscopia Eletrônica de Transmissão
3.
Med Vet Entomol ; 28(4): 355-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24720521

RESUMO

The distribution and morphology of antennal sensilla coeloconica in parasitic and predaceous biting midges were studied in females of Forcipomyia (feeding on the blood of frogs), Atrichopogon (feeding on haemolymph), Austroconops, Culicoides (feeding on the blood of birds and mammals) and Brachypogon (feeding on haemolymph and dissolved tissues of insects) (all: Diptera: Ceratopogonidae). A Lower Cretaceous female of Archiculicoides (Diptera: Ceratopogonidae) from Lebanese amber, which fed on the blood of unknown vertebrates, was also examined. In sensilla coeloconica ringed by microtrichia, the peg is grooved longitudinally and protrudes distinctly from the pit. We suggest that the microtrichia encircling the protruding peg form a structure resembling a picket fence in order to maintain a higher level of humidity, which facilitates the capture and transport of odour molecules through the channels in the peg wall. Sensilla coeloconica ringed by microtrichia function as very effective chemoreceptors in host- and prey-seeking activity. During the evolution of Ceratopogonidae, sensilla coeloconica with a fence of microtrichia have evolved twice in groups feeding on the blood of vertebrates (i.e. in the basal lineage: Lower Cretaceous or earlier) and in the subgenus Lasiohelea of Forcipomyia (Palaeogene). Sensilla coeloconica ringed by microtrichia are described for the first time in the relict genus Austroconops.


Assuntos
Antenas de Artrópodes/ultraestrutura , Ceratopogonidae/ultraestrutura , Comportamento Alimentar/fisiologia , Sensilas/ultraestrutura , Âmbar , Animais , Antenas de Artrópodes/fisiologia , Ceratopogonidae/fisiologia , Feminino , Fósseis , Sensilas/fisiologia , Especificidade da Espécie
4.
Biomimetics (Basel) ; 9(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39194466

RESUMO

The mimesis of biological mechanisms by artificial devices constitutes the modern, rapidly expanding, multidisciplinary biomimetics sector. In the broader bioinspiration perspective, however, bioarchitectures may perform independent functions without necessarily mimicking their biological generators. In this paper, we explore such Bioarchitectonic notions and demonstrate three-dimensional photonics by the exact replication of insect organs using ultra-porous silica aerogels. The subsequent conformal systolic transformation yields their miniaturized affine 'clones' having higher mass density and refractive index. Focusing on the paradigms of ommatidia, the compound eye of the hornet Vespa crabro flavofasciata and the microtrichia of the scarab Protaetia cuprea phoebe, we fabricate their aerogel replicas and derivative clones and investigate their photonic functionalities. Ultralight aerogel microlens arrays are proven to be functional photonic devices having a focal length f ~ 1000 µm and f-number f/30 in the visible spectrum. Stepwise systolic transformation yields denser and affine functional elements, ultimately fused silica clones, exhibiting strong focusing properties due to their very short focal length of f ~ 35 µm and f/3.5. The fabricated transparent aerogel and xerogel replicas of microtrichia demonstrate a remarkable optical waveguiding performance, delivering light to their sub-100 nm nanotips. Dense fused silica conical clones deliver light through sub-50 nm nanotips, enabling nanoscale light-matter interactions. Super-resolution bioarchitectonics offers new and alternative tools and promises novel developments and applications in nanophotonics and other nanotechnology sectors.

5.
Insects ; 14(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37504656

RESUMO

In the largest comparative study of coniopterygid wax gland head morphology to date, we used scanning electron microscopy to illustrate the ultrastructure of gland heads found in 2 subfamilies (Aleuropteryginae and Coniopteryginae), 5 tribes (Aleuropterygini, Coniocompsini, Coniopterygini, Conwentziini, and Fontenelleini), 9 genera (Aleuropteryx, Coniopteryx, Coniocompsa, Conwentzia, Cryptoscenea, Heteroconis, Semidalis, Spiloconis, and Thecosemidalis), and 28 species of Palearctic and Oriental dustywings collected from a variety of sites across China. We propose a new descriptive terminology to concisely characterize the major elements of gland head ultrastructure and then identify similarities and differences among them and provide detailed descriptions of the wax gland heads found in each of the nine genera examined. Based on the range of taxa examined, we propose hypotheses about the functional morphology of some of the ultrastructural elements examined and relate them to wax ring formation in dustywings. An identification key for the examined genera based on gland head morphology is also presented.

6.
J Med Entomol ; 58(2): 658-665, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33200778

RESUMO

A relevant species in waste management but also in forensic, medical, and veterinary sciences is the black soldier fly, Hermetia illucens (Linnaeus; Diptera: Stratiomyidae). An ultrastructural study by scanning electron microscopy (SEM) was conducted for the first time on maxillary palps of both sexes, describing in detail the morphology and distribution of sensilla and microtrichia. The maxillary palps, composed of two segments, show sexual dimorphism in length and shape. In both sexes, the first segment is covered only by microtrichia, but the second one is divided into two parts: the proximal one, covered only by microtrichia, and the distal one containing both microtrichia and sensory structures. These structures include two types of sensory pits and one of chaetic sensilla. Due to sexual dimorphism in palp size, females have a higher number of sensory pits. The sexual dimorphism of palps and the presence and role of sensilla in H. illucens was discussed in comparison to other species of the family Stratiomyidae and of other Diptera. This study may represent a base for further investigations on mouthpart structures of this species, involved in key physiological activities, such as feeding, mating and oviposition.


Assuntos
Dípteros/ultraestrutura , Animais , Feminino , Masculino , Boca/ultraestrutura
7.
Zootaxa ; 4559(3): 445-472, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791002

RESUMO

In our previous work we studied the ultrastructure of the antennae of pierids through a character analysis. In this study we describe the antennal ultrastructure of three species and six subspecies of Patia focused on these traits at the intrageneric level. Patia is a genus of Dismorphiinae with the highest number of scaleless antennomeres (nudum = 11‒15). Therefore, the length of its antennal club is greater than that of any other genus of the subfamily. Several other features differentiate the species of Patia, particularly the number of sulci and pseudosulci and its contour or perimeter. A pattern was observed, especially in P. rhetes, in which the central sulci are disintegrated and surrounded by several pseudosulci in the basal antennomeres and along the club; in the medial and distal antennomeres, the pseudosulci merge to form sulci aggregates. Pseudosulci are uncommon on the distal antennomeres, even in P. rhetes. The central sulci are irregular and have a discontinuous edge when they are disaggregated and accompanied by pseudosulci; those that are elliptical and have a continuous contour, seldom have pseudosulci nearby. Another noteworthy feature is the different shapes of the distal antennomere that occur in the subspecies of P. cordillera and P. orise. In the former, this antennomere is quite elongated and ends at a point, whereas the distal one is less elongated and its apex blunt. Patia rhetes shows the lowest number of scaleless antennomeres (n = 11) while P. cordillera sspp. the largest (n = 14 or 15). The variety of the sensilla present in the Patia species does not provide specific differences, except in P. cordillera sororna where we discovered the presence of a claviform sensillum that does not present in any other species or subspecies. In our small sample size, we did not observe sexual dimorphism.


Assuntos
Sensilas , Caracteres Sexuais , Animais , Antenas de Artrópodes , Microscopia Eletrônica de Varredura , Fenótipo
8.
Beilstein J Nanotechnol ; 9: 812-823, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600142

RESUMO

The hindwings of beetles are folded under the elytra when they are at rest but are extended during flight, which can provide bioinspiration for the design of deployable micro air vehicles (MAVs). Beetle hindwings must be able to be both securely locked under the elytra and freely extended for flight, depending on the required action. To investigate the locking mechanism, this study used environmental scanning electron microscopy (ESEM) to examine the microstructures of the elytra, hindwings and abdomen of the Asian ladybeetle, Harmonia axyridis (Pallas, 1773). On the ventral side (VS) of the elytra, the microtrichia show a transitional structure from the lateral edge to the medial edge. On the hindwing surface, the folded regions were observed on both the dorsal side (DS) and the VS. On the abdomen, the microtrichia between the abdominal segments show a cyclical change from sparse to dense in each segment in the middle of the abdomen. Furthermore, the different directions of microtrichia that lead to self-locking friction on the surfaces of the hindwing, elytron and abdomen appear to facilitate interlocking. A model for the interlocking of the hindwings of the H. axyridis was established, and its underlying mechanism is discussed.

9.
J Morphol ; 240(2): 101-113, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-29852724

RESUMO

Beetles with flying ability lock their elytra (forewings) to the thorax or/and abdomen using complex locking devices. These structures are often supplemented with microtrichia fields of the inner surface of the elytra and adjacent parts of the pterothorax. The present study provides information about the ultrastructure of microtrichia of the dorso-medial fields of the thorax (TDM) in tenebrionid beetles (Tribolium castaneum, Zophobas rugipes). Epidermal cells located under the TDM field contain large electron-lucent vesicles connected to rough endoplasmic reticulum. Microtrichia and underlying cuticle of the TDM have a high density of pore channels, which are responsible for transport of an epidermal secretion onto the TDM surface. In order to show the presence of the secretion on the cuticle surface, TDM fields of air-dried specimens were compared with those in specimens after two treatments, such as (1) dehydration in ethanol and acetone, and (2) dental-wax-cast technique applied to living beetles. This revealed the presence of the nonvolatile film on the intact microtrichial surface. Possible functions of this film are suggested to be (1) the increase of adhesive forces in the contact area and (2) providing soft coupling and release of two corresponding parts of the elytra-locking device. J. Morphol. 240:101-113, 1999. © 1999 Wiley-Liss, Inc.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa