Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Am J Physiol Endocrinol Metab ; 327(1): E42-E54, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717363

RESUMO

Skeletal muscle microvascular blood flow (MBF) plays an important role in glucose disposal in muscle. Impairments in muscle MBF contribute to insulin resistance and prediabetes. Animal studies show that short-term (3 day) high-fat feeding blunts skeletal muscle MBF before impairing insulin-stimulated glucose disposal. It is not known whether this occurs in humans. We investigated the temporal impact of a 7-day high-calorie high-fat (HCHF) diet intervention (+52% kJ; 41% fat) on fasting and postprandial cardiometabolic outcomes in 14 healthy adults (18-37 yr). Metabolic health and vascular responses to a mixed-meal challenge (MMC) were measured at pre (day 0)-, mid (day 4)- and post (day 8)-intervention. There were no significant differences in body weight, body fat %, fasting blood glucose, and fasting plasma insulin concentrations at pre-, mid- and postintervention. Compared with preintervention there was a significant increase in insulin (but not glucose) total area under the curve in response to the MMC at midintervention (P = 0.041) and at postintervention (P = 0.028). Unlike at pre- and midintervention, at postintervention muscle MBF decreased at 60 min (P = 0.024) and 120 min (P = 0.023) after the MMC. However, macrovascular blood flow was significantly increased from 0 to 60 min (P < 0.001) and 120 min (P < 0.001) after the MMC at pre-, mid- and postintervention. Therefore, short-term HCHF feeding in healthy individuals leads to elevated postprandial insulin but not glucose levels and a blunting of meal-induced skeletal muscle MBF responses but not macrovascular blood flow responses.NEW & NOTEWORTHY This is the first study to investigate skeletal muscle microvascular blood flow (MBF) responses in humans after short-term high-calorie high-fat (HCHF) diet. The main findings were that HCHF diet causes elevated postprandial insulin in healthy individuals within 3 days and blunts meal-induced muscle MBF within 7 days, despite no impairments in postprandial glucose or macrovascular blood flow.


Assuntos
Glicemia , Dieta Hiperlipídica , Hiperinsulinismo , Insulina , Músculo Esquelético , Período Pós-Prandial , Humanos , Adulto , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Adulto Jovem , Feminino , Adolescente , Período Pós-Prandial/fisiologia , Insulina/sangue , Glicemia/metabolismo , Fluxo Sanguíneo Regional , Microcirculação/fisiologia , Resistência à Insulina/fisiologia , Voluntários Saudáveis , Microvasos , Jejum
2.
Diabetes Obes Metab ; 26(5): 1582-1592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246697

RESUMO

AIM: Chronotype reflects a circadian rhythmicity that regulates endothelial function. While the morning chronotype (MORN) usually has low cardiovascular disease risk, no study has examined insulin action on endothelial function between chronotypes. We hypothesized intermediate chronotypes (INT) would have lower vascular insulin sensitivity than morning chronotype (MORN). MATERIALS AND METHODS: Adults with obesity were classified per Morningness-Eveningness Questionnaire (MEQ) as either MORN (n = 27, 22 female, MEQ = 63.7 ± 4.7, 53.8 ± 6.7 years, 35.3 ± 4.9 kg/m2) or INT (n = 29, 23 female, MEQ = 48.8 ± 6.7, 56.6 ± 9.0 years, 35.7 ± 6.1 kg/m2). A 120 min euglycaemic-hyperinsulinaemic clamp (40 mU/m2/min, 90 mg/dl) was conducted to assess macrovascular insulin sensitivity via brachial artery flow-mediated dilation (%FMD; conduit artery), post-ischaemic flow velocity (resistance arteriole), as well as microvascular insulin sensitivity via contrast-enhanced ultrasound [e.g. microvascular blood volume (perfusion)]. Fasting plasma arginine and citrulline, as well as fasting and clamp-derived plasma endothelin-1 and nitrate/nitrite, were assessed as surrogates of vasoconstriction and nitric oxide-mediated vasodilation. Aerobic fitness (VO2max) and body composition (dual-energy X-ray absorptiometry) were also collected. RESULTS: MORN had a higher VO2max compared with INT (p < .01), although there was no difference in fat mass. While fasting FMD was similar between groups, insulin lowered FMD corrected to shear stress and microvascular blood volume in INT compared with MORN after co-varying for VO2max (both p ≤ .02). INT also had a lower fasting nitrate (p = .03) and arginine (p = .07). Higher MEQ correlated with elevated FMD (r = 0.33, p = .03) and lower post-ischaemic flow velocity (r = -0.33, p = .03) as well as shear rate (r = -0.36, p = .02) at 120 min. CONCLUSION: When measured during the morning, INT had a lower vascular insulin sensitivity than MORN. Additional work is needed to understand endothelial function differences among chronotypes to optimize cardiovascular disease risk reduction.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Adulto , Humanos , Feminino , Cronotipo , Nitratos , Obesidade , Artéria Braquial/fisiologia , Insulina , Endotélio Vascular , Vasodilatação , Arginina
3.
Medicina (Kaunas) ; 59(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512004

RESUMO

Background and Objectives: Ultrasound (US) is a non-invasive tool for the in vivo detection of peripheral nerve alterations. Materials and Methods: In this study, we applied nerve US to assist the discrimination between the spectrum of amyotrophic lateral sclerosis (ALS, n = 11), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 5), and genetically confirmed Charcot-Marie-Tooth disease (CMT, n = 5). All participants and n = 15 controls without neurological diseases underwent high-resolution US of the bilateral tibial nerve. The nerve cross-sectional area (CSA) and nerve microvascular blood flow were compared between the groups and related to cerebrospinal fluid (CSF) measures, clinical symptoms, and nerve conduction studies. The analyses are part of a larger multimodal study on the comparison between US and 7 Tesla (7T) magnetic resonance neurography (MRN). Results: The patients and controls were matched with respect to their demographical data. CMT had the longest disease duration, followed by CIDP and ALS. CSA was related to age, weight, and disease duration. CSA was larger in CMT and CIDP compared to ALS and controls. The blood flow was greatest in CIDP, and higher than in CMT, ALS, and controls. In ALS, greater CSA was correlated with greater CSF total protein and higher albumin quotient. The US measures did not correlate with clinical scores or nerve conduction studies in any of the subgroups. Conclusion: Our results point towards the feasibility of CSA and blood flow to discriminate between ALS, CIDP, and CMT, even in groups of small sample size. In ALS, larger CSA could indicate an inflammatory disease subtype characterized by reduced blood-nerve barrier integrity. Our upcoming analysis will focus on the additive value of 7T MRN in combination with US to disentangle the spectrum between more inflammatory or more degenerative disease variants among the disease groups.


Assuntos
Esclerose Lateral Amiotrófica , Polineuropatias , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Nervos Periféricos/diagnóstico por imagem , Polineuropatias/diagnóstico por imagem , Ultrassonografia/métodos
4.
Bull Math Biol ; 84(8): 85, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802265

RESUMO

We analyse mathematical models in order to understand how microstructural features of vascular networks may affect blood flow dynamics, and to identify particular characteristics that promote the onset of self-sustained oscillations. By focusing on a simple three-node motif, we predict that network "redundancy", in the form of a redundant vessel connecting two main flow-branches, together with differences in haemodynamic resistance in the branches, can promote the emergence of oscillatory dynamics. We use existing mathematical descriptions for blood rheology and haematocrit splitting at vessel branch-points to construct our flow model; we combine numerical simulations and stability analysis to study the dynamics of the three-node network and its relation to the system's multiple steady-state solutions. While, for the case of equal inlet-pressure conditions, a "trivial" equilibrium solution with no flow in the redundant vessel always exists, we find that it is not stable when other, stable, steady-state attractors exist. In turn, these "nontrivial" steady-state solutions may undergo a Hopf bifurcation into an oscillatory state. We use the branch diameter ratio, together with the inlet haematocrit rate, to construct a two-parameter stability diagram that delineates regimes in which such oscillatory dynamics exist. We show that flow oscillations in this network geometry are only possible when the branch diameters are sufficiently different to allow for a sufficiently large flow in the redundant vessel, which acts as the driving force of the oscillations. These microstructural properties, which were found to promote oscillatory dynamics, could be used to explore sources of flow instability in biological microvascular networks.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Hemodinâmica , Microvasos/fisiologia , Modelos Teóricos
5.
J Vasc Res ; : 1-10, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535220

RESUMO

INTRODUCTION: This study aims to examine the effect of a diet intervention and pyridoxamine (PM) supplementation on hepatic microcirculatory and metabolic dysfunction in nonalcoholic fatty liver disease (NAFLD). METHODS: NAFLD in Wistar rats was induced with a high-fat diet for 20 weeks (NAFLD 20 weeks), and control animals were fed with a standard diet. The NAFLD diet intervention group received the control diet between weeks 12 and 20 (NAFLD 12 weeks), while the NAFLD 12 weeks + PM group also received PM. Fasting blood glucose (FBG) levels, body weight (BW), visceral adipose tissue (VAT), and hepatic microvascular blood flow (HMBF) were evaluated at the end of the protocol. RESULTS: The NAFLD group exhibited a significant increase in BW and VAT, which was prevented by the diet intervention, irrespective of PM treatment. The FBG was elevated in the NAFLD group, and caloric restriction improved this parameter, although additional improvement was achieved by PM. The NAFLD group displayed a 31% decrease in HMBF, which was partially prevented by caloric restriction and completely prevented when PM was added. HMBF was negatively correlated to BW, FBG, and VAT content. CONCLUSION: PM supplementation in association with lifestyle modifications could be an effective intervention for metabolic and hepatic vascular complications.

6.
Clin Oral Investig ; 25(3): 1223-1233, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32613435

RESUMO

OBJECTIVES: The purpose of this preliminary study was to explore blood microcirculation and somatosensory profiles in periodontitis patients before and after non-surgical periodontal therapy. MATERIALS AND METHODS: Twenty patients (10 men and 10 women, 20 to 30 years old) and 20 age- and gender-matched healthy controls were included. Non-surgical periodontal therapy was performed for all patients. Clinical examination including pocket probing depth (PPD), clinical attachment loss (CAL), and bleeding on probing (BOP) were performed at baseline (BL), 1 week (1W), and 4 weeks (4W) after non-surgical periodontal therapy on 6 sites of tooth 32 and 42. Laser Doppler flowmetry (LDF) and quantitative sensory testing (QST) were applied at the attached gingiva of tooth 32 and 42 at BL, 1W, and 4W after non-surgical periodontal therapy. Data were analyzed with a two-way mixed-model of ANOVA. RESULTS: The PPD, CAL and BOP significantly improved after non-surgical periodontal therapy (p < 0.001). Periodontitis patients demonstrated a higher tissue microvascular blood cell concentration (p = 0.015) and a significant gain in thermal (p = 0.037) and mechanical (p = 0.003) somatosensory function compared to controls. After non-surgical periodontal therapy, the flux (p = 0.002) and speed (p = 0.008) of blood flow decreased significantly and thermal (p = 0.029) and mechanical (p < 0.001) somatosensory function were reversed. CONCLUSION: Gingival microcirculation and somatosensory function seem impaired in patients with periodontitis and are reversed following non-surgical periodontal therapy. CLINICAL RELEVANCE: LDF and QST may be appropriate tools to further characterize gingival inflammation and treatment responses in periodontitis.


Assuntos
Periodontite , Adulto , Feminino , Seguimentos , Gengiva , Humanos , Fluxometria por Laser-Doppler , Masculino , Microcirculação , Perda da Inserção Periodontal , Índice Periodontal , Periodontite/terapia , Adulto Jovem
7.
Am J Physiol Heart Circ Physiol ; 318(4): H908-H915, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142355

RESUMO

The objective of this study was to assess normative values for comprehensive forearm skin microcirculatory function: oxygen saturation, tissue fraction of red blood cells (RBCs), and speed-resolved perfusion. Furthermore, to examine the influence of age and sex on microcirculatory function. Measurements were performed using a noninvasive probe-based system, including diffuse reflectance spectroscopy and laser-Doppler flowmetry, yielding output data in absolute units. The study was conducted within the Swedish CArdioPulmonary BioImage Study (SCAPIS) and included 1,765 men and women aged 50-65 yr from the Linköping general population. Normative values are given at baseline, at the end of a 5-min occlusion of the brachial artery and during hyperemia after occlusion release. We found a consistent age distribution, in which the oldest individuals had the lowest peak oxygen saturation (P < 0.001) and the highest baseline low-speed perfusion (P < 0.001). Women had higher peak oxygen saturation (P < 0.001), lower RBC tissue fraction, in general (P < 0.001), lower baseline perfusion in all speed regions (P = 0.01), and lower peak high-speed perfusion at hyperemia (P < 0.001). The normative data can be used as reference values in future studies of disease-specific populations. The results show that age and sex are important aspects to consider in studies of microvascular function. Women and younger age were factors associated with higher peak oxygen saturation after ischemia. This is a novel parameter that reflects overall microcirculatory function associated with vascular dilation capacity.NEW & NOTEWORTHY This study expands experimental microcirculatory research to clinical use by providing normative values on microcirculatory function in a large population-based cohort. Women and younger age were factors associated with higher peak oxygen saturation after ischemia, which implies that age and sex are important aspects to consider in studies of microvascular function. This study is the first step toward using microcirculatory assessment as a tool to improve diagnosis, prognosis, and treatment in disease-specific populations.


Assuntos
Fluxometria por Laser-Doppler/normas , Microcirculação , Pele/irrigação sanguínea , Fatores Etários , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Valores de Referência , Fluxo Sanguíneo Regional , Fatores Sexuais
8.
Exp Physiol ; 105(1): 201-210, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713942

RESUMO

NEW FINDINGS: What is the central question of this study? What are the characteristics of the time courses of blood flow in the brachial artery and microvascular beds of the skin and skeletal muscle following transient ischaemia? What is the main finding and its importance? Skeletal muscle blood flow was significantly slower than the transient increase in the cutaneous tissue, suggesting mechanistic differences between cutaneous and muscular blood flow distribution after transient ischaemia. These results challenge the use of the cutaneous circulation as globally representative of vascular function. ABSTRACT: Vascular function can be assessed by measuring post-occlusion hyperaemic responses along the arterial tree (vascular occlusion test; VOT). It is currently unclear if responses are similar across vascular beds following cuff release, given potential differences in compliance. To examine this, we compared laser Doppler-derived blood flux in the cutaneous circulation (LDFcut ) and skeletal muscle microvascular blood flux (BFI) using diffuse correlation spectroscopy (DCS), to brachial artery blood flow (BABF) during VOT. We hypothesized that during a VOT following cuff release, (1) BFI response would be delayed compared to the brachial artery response, and (2) time to peak blood flux in the cutaneous vasculature would be slower than both brachial artery and skeletal muscle responses. Seven healthy men (26 ± 4 years) performed three trials of a brachial artery VOT protocol with 10 min of rest between trials. A combined DCS and near-infrared spectroscopy probe provided BFI and oxygenation characteristics (total-[haem]), respectively, of skeletal muscle. BABF was determined via Doppler ultrasound and microvascular cutaneous blood flux was determined via LDFcut . Following cuff release, time to peak of BFI (32.3 ± 6.0 s) was significantly longer than BABF (7.3 ± 2.5 s), LDFcut (10.0 ± 6.4 s) and total-[haem] (14.2 ± 8.3 s) (all P < 0.001). However, time to peak of BABF, LDFcut and total-[haem] were not significantly different (P > 0.05). These results suggest mechanistic differences in control of cutaneous and muscular blood flow distribution after transient ischaemia.


Assuntos
Artéria Braquial/fisiologia , Microcirculação , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional , Pele/irrigação sanguínea , Adulto , Constrição , Humanos , Isquemia , Masculino , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral , Adulto Jovem
9.
Muscle Nerve ; 61(4): 521-526, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31899543

RESUMO

BACKGROUND: We present one patient with an initial diagnosis of Guillain-Barré syndrome (GBS) and one with Charcot-Marie-Tooth disease (CMT) type 1A. METHODS: Both patients underwent ankle tibial nerve fusion-imaging of high-resolution ultrasound (HRUS) with 7T MR neurography (MRN). RESULTS: In GBS, the nerve was enlarged, T2-hyperintense, and showed increased vascularization 21 months after symptom onset. In CMT1A, the enlarged nerve was T2-isointense with normal endoneurial blood flow. CONCLUSIONS: We demonstrate the utility of 7T-MRN-HRUS-fusion-imaging. In GBS, there was evidence of ongoing inflammation resulting in a changed diagnosis to acute-onset chronic demyelinating polyradiculoneuropathy and maintenance of immunotherapy. By MRN-HRUS-fusion, patients with presumed peripheral axonal degeneration could be shown to display imaging markers associated with peripheral nervous system inflammation. Thus, more accurate identification of a treatable inflammatory component may become possible.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Nervo Tibial/diagnóstico por imagem , Ultrassonografia/métodos , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Feminino , Síndrome de Guillain-Barré/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional/fisiologia , Nervo Tibial/irrigação sanguínea , Adulto Jovem
10.
Am J Respir Crit Care Med ; 199(9): 1086-1096, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30641027

RESUMO

Rationale: In the CLAIM study, dual bronchodilation with indacaterol/glycopyrronium (IND/GLY) significantly reduced hyperinflation, which translated into improved cardiac function, measured by left ventricular end-diastolic volume and cardiac output. Pulmonary microvascular blood flow (PMBF) is reduced in chronic obstructive pulmonary disease (COPD); however, the effect of reduced lung hyperinflation on PMBF remains unknown. Objectives: To determine the effect of lung deflation with IND/GLY on PMBF and regional pulmonary ventilation using magnetic resonance imaging (MRI) in hyperinflated patients with COPD. Methods: In this double-blind, randomized, two-period crossover study, gadolinium-enhanced MRI and phase-resolved functional lung MRI were used to measure PMBF and regional ventilation, respectively, in patients with COPD receiving IND/GLY versus placebo. Measurements and Main Results: Sixty-two patients were randomized to receive once-daily IND/GLY (110/50 µg) for 14 days, followed by 14 days of placebo, or vice versa. Treatment periods were separated by a 14-day washout. Sixty patients were included in the per-protocol analysis. MRI measurements showed significant improvements in total PMBF (P = 0.006) and regional PMBF (P values for individual lobes were between 0.004 and 0.022) in response to IND/GLY versus placebo. Regional ventilation was also significantly improved with IND/GLY, as evidenced by a 12.4% increase versus placebo (P = 0.011), a 14.3% relative decrease in ventilation defect percentage of nonventilated/hypoventilated lung tissue (cutoff was defined as 0.075 regional ventilation; P = 0.0002), and a 15.7% reduction in the coefficient of variation of regional ventilation compared with placebo (P < 0.0001). Conclusions: Pharmacologic intervention with IND/GLY improves pulmonary microvascular blood flow and regional ventilation in patients with COPD with hyperinflation. Clinical trial registered with www.clinicaltrials.gov (NCT02442206).


Assuntos
Antiasmáticos/uso terapêutico , Glicopirrolato/uso terapêutico , Indanos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quinolonas/uso terapêutico , Idoso , Débito Cardíaco/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Humanos , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Circulação Pulmonar/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos
11.
J Sports Sci ; 38(21): 2462-2470, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32654597

RESUMO

To establish the test-retest reliability of pulmonary oxygen uptake (V̇O2), muscle deoxygenation (deoxy[haem]) and tissue oxygen saturation (StO2) kinetics in youth elite-cyclists. From baseline pedalling, 15 youth cyclists completed 6-min step transitions to a moderate- and heavy-intensity work rate separated by 8 min of baseline cycling. The protocol was repeated after 1 h of passive rest. V̇O2 was measured breath-by-breath alongside deoxy[haem] and StO2 of the vastus lateralis by near-infrared spectroscopy. Reliability was assessed using 95% limits of agreement (LoA), the typical error (TE) and the intraclass correlation coefficient (ICC). During moderate- and heavy-intensity step cycling, TEs for the amplitude, time delay and time constant ranged between 3.5-21.9% and 3.9-12.1% for V̇O2 and between 6.6-13.7% and 3.5-10.4% for deoxy[haem], respectively. The 95% confidence interval for estimating the kinetic parameters significantly improved for ensemble-averaged transitions of V̇O2 (p < 0.01) but not for deoxy[haem]. For StO2, the TEs for the baseline, end-exercise and the rate of deoxygenation were 1.0-42.5% and 1.1-5.5% during moderate- and heavy-intensity exercise, respectively. The ICC ranged from 0.81 to 0.99 for all measures. Test-retest reliability data provide limits within which changes in V̇O2, deoxy[haem] and StO2 kinetics may be interpreted with confidence in youth athletes.


Assuntos
Consumo de Oxigênio , Ventilação Pulmonar , Músculo Quadríceps/metabolismo , Corrida/fisiologia , Adaptação Fisiológica , Adolescente , Feminino , Heme/metabolismo , Humanos , Masculino , Microcirculação , Músculo Quadríceps/irrigação sanguínea , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho
12.
Neuroimage ; 202: 116067, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31394180

RESUMO

Studies of flow-metabolism coupling often presume that microvessel architecture is a surrogate for blood flow. To test this assumption, we introduce an in vivo Dynamic Contrast Optical Coherence Tomography (DyC-OCT) method to quantify layer-resolved microvascular blood flow and volume across the full depth of the mouse neocortex, where the angioarchitecture has been previously described. First, we cross-validate average DyC-OCT cortical flow against conventional Doppler OCT flow. Next, with laminar DyC-OCT, we discover that layer 4 consistently exhibits the highest microvascular blood flow, approximately two-fold higher than the outer cortical layers. While flow differences between layers are well-explained by microvascular volume and density, flow differences between subjects are better explained by transit time. Finally, from layer-resolved tracer enhancement, we also infer that microvascular hematocrit increases in deep cortical layers, consistent with predictions of plasma skimming. Altogether, our results show that while the cortical blood supply derives mainly from the pial surface, laminar hemodynamics ensure that the energetic needs of individual cortical layers are met. The laminar trends reported here provide data that links predictions based on the cortical angioarchitecture to cerebrovascular physiology in vivo.


Assuntos
Circulação Cerebrovascular/fisiologia , Hemodinâmica/fisiologia , Modelos Neurológicos , Neocórtex/irrigação sanguínea , Neocórtex/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvasos/anatomia & histologia , Microvasos/fisiologia , Tomografia de Coerência Óptica
13.
Exp Physiol ; 104(12): 1929-1941, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512297

RESUMO

NEW FINDINGS: What is the central question of this study? Do the phase II parameters of pulmonary oxygen uptake ( V̇O2 ) kinetics display linear, first-order behaviour in association with alterations in skeletal muscle oxygenation during step cycling of different intensities or when exercise is initiated from an elevated work rate in youths. What is the main finding and its importance? Both linear and non-linear features of phase II V̇O2 kinetics may be determined by alterations in the dynamic balance between microvascular O2 delivery and utilization in 11-15 year olds. The recruitment of higher-order (i.e. type II) muscle fibres during 'work-to-work' cycling might be responsible for modulating V̇O2 kinetics with chronological age. ABSTRACT: This study investigated in 19 male youths (mean age: 13.6 ± 1.1 years, range: 11.7-15.7 years) the relationship between pulmonary oxygen uptake ( V̇O2 ) and muscle deoxygenation kinetics during moderate- and very heavy-intensity 'step' cycling initiated from unloaded pedalling (i.e. U â†’ M and U â†’ VH) and moderate to very heavy-intensity step cycling (i.e. M â†’ VH). Pulmonary V̇O2 was measured breath-by-breath along with the tissue oxygenation index (TOI) of the vastus lateralis using near-infrared spectroscopy. There were no significant differences in the phase II time constant ( τV̇O2p ) between U â†’ M and U â†’ VH (23 ± 6 vs. 25 ± 7 s; P = 0.36); however, the τV̇O2p was slower during M â†’ VH (42 ± 16 s) compared to other conditions (P < 0.001). Quadriceps TOI decreased with a faster (P < 0.01) mean response time (MRT; i.e. time delay + τ) during U â†’ VH (14 ± 2 s) compared to U â†’ M (22 ± 4 s) and M â†’ VH (20 ± 6 s). The difference (Δ) between the τV̇O2p and MRT-TOI was greater during U â†’ VH compared to U â†’ M (12 ± 7 vs. 2 ± 7 s, P < 0.001) and during M â†’ VH (23 ± 15 s) compared to other conditions (P < 0.02), suggesting an increased proportional speeding of fractional O2 extraction. The slowing of the τV̇O2p during M â†’ VH relative to U â†’ M and U â†’ VH correlated positively with chronological age (r = 0.68 and 0.57, respectively, P < 0.01). In youths, 'work-to-work' transitions slowed microvascular O2 delivery-to-O2 utilization with alterations in phase II V̇O2 dynamics accentuated between the ages of 11 and 15 years.


Assuntos
Teste de Esforço/métodos , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Troca Gasosa Pulmonar/fisiologia , Ventilação Pulmonar/fisiologia , Adolescente , Criança , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/métodos
14.
Am J Physiol Endocrinol Metab ; 315(6): E1242-E1250, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351988

RESUMO

The microcirculation in adipose tissue is markedly impaired in type 2 diabetes (T2D). Resistance training (RT) often increases muscle mass and promotes a favorable metabolic profile in people with T2D, even in the absence of fat loss. Whether the metabolic benefits of RT in T2D are linked to improvements in adipose tissue microvascular blood flow is unknown. Eighteen sedentary people with T2D (7 women/11 men, 52 ± 7 yr) completed 6 wk of RT. Before and after RT, overnight-fasted participants had blood sampled for clinical chemistries (glucose, insulin, lipids, HbA1c, and proinflammatory markers) and underwent an oral glucose challenge (OGC; 50 g glucose × 2 h) and a DEXA scan to assess body composition. Adipose tissue microvascular blood volume and flow were assessed at rest and 1 h post-OGC using contrast-enhanced ultrasound. RT significantly reduced fasting blood glucose ( P = 0.006), HbA1c ( P = 0.007), 2-h glucose area under the time curve post-OGC ( P = 0.014), and homeostatic model assessment of insulin resistance ( P = 0.005). This was accompanied by a small reduction in total body fat ( P = 0.002), trunk fat ( P = 0.023), and fasting triglyceride levels ( P = 0.029). Lean mass ( P = 0.003), circulating TNF-α ( P = 0.006), and soluble VCAM-1 ( P < 0.001) increased post-RT. There were no significant changes in adipose tissue microvascular blood volume or flow following RT; however those who did have a higher baseline microvascular blood flow post-RT also had lower fasting triglyceride levels ( r = -0.476, P = 0.045). The anthropometric, glycemic, and insulin-sensitizing benefits of 6 wk of RT in people with T2D are not associated with an improvement in adipose tissue microvascular responses; however, there may be an adipose tissue microvascular-linked benefit to fasting triglyceride levels.


Assuntos
Tecido Adiposo/irrigação sanguínea , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Microvasos/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Treinamento Resistido , Absorciometria de Fóton , Glicemia/metabolismo , Composição Corporal , Feminino , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade
15.
Am J Physiol Endocrinol Metab ; 315(2): E307-E315, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29763373

RESUMO

Skeletal muscle microvascular (capillary) blood flow increases in the postprandial state or during insulin infusion due to dilation of precapillary arterioles to augment glucose disposal. This effect occurs independently of changes in large artery function. However, acute hyperglycemia impairs vascular function, causes insulin to vasoconstrict precapillary arterioles, and causes muscle insulin resistance in vivo. We hypothesized that acute hyperglycemia impairs postprandial muscle microvascular perfusion, without disrupting normal large artery hemodynamics, in healthy humans. Fifteen healthy people (5 F/10 M) underwent an oral glucose challenge (OGC, 50 g glucose) and a mixed-meal challenge (MMC) on two separate occasions (randomized, crossover design). At 1 h, both challenges produced a comparable increase (6-fold) in plasma insulin levels. However, the OGC produced a 1.5-fold higher increase in blood glucose compared with the MMC 1 h postingestion. Forearm muscle microvascular blood volume and flow (contrast-enhanced ultrasound) were increased during the MMC (1.3- and 1.9-fold from baseline, respectively, P < 0.05 for both) but decreased during the OGC (0.7- and 0.6-fold from baseline, respectively, P < 0.05 for both) despite a similar hyperinsulinemia. Both challenges stimulated brachial artery flow (ultrasound) and heart rate to a similar extent, as well as yielding comparable decreases in diastolic blood pressure and total vascular resistance. Systolic blood pressure and aortic stiffness remained unaltered by either challenge. Independently of large artery hemodynamics, hyperglycemia impairs muscle microvascular blood flow, potentially limiting glucose disposal into skeletal muscle. The OGC reduced microvascular blood flow in muscle peripherally and therefore may underestimate the importance of skeletal muscle in postprandial glucose disposal.


Assuntos
Glucose/farmacologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Administração Oral , Adolescente , Adulto , Artérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Estudos Transversais , Feminino , Antebraço/irrigação sanguínea , Voluntários Saudáveis , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Hiperinsulinismo/sangue , Masculino , Microcirculação/efeitos dos fármacos , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Adulto Jovem
17.
BMC Neurosci ; 18(1): 67, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886695

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is associated with an increased risk of cerebrovascular diseases, including cerebral ischemia. Microvascular dysfunction is an important feature underlying the pathophysiology of cerebrovascular diseases. In this study, we aimed to investigate the impacts of ischemia and reperfusion (IR) injury on the cerebral microvascular function of rats with high-fat diet-induced MetS. RESULTS: We examined Wistar rats fed a high-fat diet (HFD) or normal diet (CTL) for 20 weeks underwent 30 min of bilateral carotid artery occlusion followed by 1 h of reperfusion (IR) or sham surgery. Microvascular blood flow was evaluated on the parietal cortex surface through a cranial window by laser speckle contrast imaging, functional capillary density, endothelial function and endothelial-leukocyte interactions by intravital videomicroscopy. Lipid peroxidation was assessed by TBARs analysis, the expression of oxidative enzymes and inflammatory markers in the brain tissue was analyzed by real-time PCR. The cerebral IR in MetS animals induced a functional capillary rarefaction (HFD IR 117 ± 17 vs. CTL IR 224 ± 35 capillary/mm2; p < 0.05), blunted the endothelial response to acetylcholine (HFD IR -16.93% vs. CTL IR 16.19% from baseline inner diameter p < 0.05) and increased the endothelial-leukocyte interactions in the venules in the brain. The impact of ischemia on the cerebral microvascular blood flow was worsened in MetS animals, with a marked reduction of cerebral blood flow, exposing brain tissue to a higher state of hypoxia. CONCLUSIONS: Our results demonstrate that during ischemia and reperfusion, animals with MetS are more susceptible to alterations in the cerebral microcirculation involving endothelial dysfunction and oxidative stress events.


Assuntos
Isquemia Encefálica/fisiopatologia , Dieta Hiperlipídica , Síndrome Metabólica/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Circulação Cerebrovascular/fisiologia , Microcirculação/fisiologia , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reperfusão/métodos
18.
Bull Math Biol ; 79(3): 662-681, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28176185

RESUMO

We show that large microvascular networks with realistic topologies, geometries, boundary conditions, and constitutive laws can exhibit many steady-state flow configurations. This is in direct contrast to most previous studies which have assumed, implicitly or explicitly, that a given network can only possess one equilibrium state. While our techniques are general and can be applied to any network, we focus on two distinct network types that model human tissues: perturbed honeycomb networks and random networks generated from Voronoi diagrams. We demonstrate that the disparity between observed and predicted flow directions reported in previous studies might be attributable to the presence of multiple equilibria. We show that the pathway effect, in which hematocrit is steadily increased along a series of diverging junctions, has important implications for equilibrium discovery, and that our estimates of the number of equilibria supported by these networks are conservative. If a more complete description of the plasma skimming effect that captures red blood cell allocation at junctions with high feed hematocrit were to be obtained empirically, then the number of equilibria found by our approach would at worst remain the same and would in all likelihood increase significantly.


Assuntos
Microvasos/fisiologia , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Hematócrito , Hemorreologia , Humanos , Conceitos Matemáticos , Dinâmica não Linear , Análise Numérica Assistida por Computador
19.
Am J Respir Crit Care Med ; 192(5): 570-80, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26067761

RESUMO

RATIONALE: Smoking-related microvascular loss causes end-organ damage in the kidneys, heart, and brain. Basic research suggests a similar process in the lungs, but no large studies have assessed pulmonary microvascular blood flow (PMBF) in early chronic lung disease. OBJECTIVES: To investigate whether PMBF is reduced in mild as well as more severe chronic obstructive pulmonary disease (COPD) and emphysema. METHODS: PMBF was measured using gadolinium-enhanced magnetic resonance imaging (MRI) among smokers with COPD and control subjects age 50 to 79 years without clinical cardiovascular disease. COPD severity was defined by standard criteria. Emphysema on computed tomography (CT) was defined by the percentage of lung regions below -950 Hounsfield units (-950 HU) and by radiologists using a standard protocol. We adjusted for potential confounders, including smoking, oxygenation, and left ventricular cardiac output. MEASUREMENTS AND MAIN RESULTS: Among 144 participants, PMBF was reduced by 30% in mild COPD, by 29% in moderate COPD, and by 52% in severe COPD (all P < 0.01 vs. control subjects). PMBF was reduced with greater percentage emphysema-950HU and radiologist-defined emphysema, particularly panlobular and centrilobular emphysema (all P ≤ 0.01). Registration of MRI and CT images revealed that PMBF was reduced in mild COPD in both nonemphysematous and emphysematous lung regions. Associations for PMBF were independent of measures of small airways disease on CT and gas trapping largely because emphysema and small airways disease occurred in different smokers. CONCLUSIONS: PMBF was reduced in mild COPD, including in regions of lung without frank emphysema, and may represent a distinct pathological process from small airways disease. PMBF may provide an imaging biomarker for therapeutic strategies targeting the pulmonary microvasculature.


Assuntos
Pulmão/irrigação sanguínea , Microvasos/patologia , Circulação Pulmonar , Enfisema Pulmonar/patologia , Fumar/patologia , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Gadolínio , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem de Perfusão , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/diagnóstico por imagem , Índice de Gravidade de Doença , Espirometria , Tomografia Computadorizada por Raios X
20.
Microcirculation ; 22(4): 294-305, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25737352

RESUMO

OBJECTIVE: We have previously described a distinct abnormality in the cutaneous microcirculation that is characterized by an abnormal reperfusion response following an ischemic stimulus. We investigated the physiological significance of this abnormality; by measuring microvascular perfusion and blood oxygen saturation in groups stratified by three distinct reperfusion responses. METHODS: Cutaneous microvascular reperfusion after four minutes of arterial occlusion above the ankle was measured on the foot using laser Doppler fluximetry and optical reflectance spectroscopy in almost 400 adults. Individuals were stratified into three groups according to the microvascular reperfusion response: normal and two abnormal patterns (DEP and NDEP). RESULTS: Our main findings were that abnormal microvascular reperfusion responses (DEP and NDEP) had a higher baseline oxygen saturation (p = 0.005), a lower plateau in oxygen saturation (p < 0.0001 and <0.0001, respectively), lower oxygen saturation area under the curve (p < 0.0001 and <0.0001), a longer time to reach oxygen saturation plateau (p = 0.002 and 0.001), and a longer time to initiate an increase in oxygen saturation (p = 0.007 and 0.001) compared to normal. Differences remained after adjustment for confounding variables. CONCLUSIONS: Individuals with abnormal microvascular reperfusion had a markedly altered pattern of oxygen increase during reperfusion. We propose that this may represent dysfunctional microvascular autoregulation that is clinically important in the etiopathology of target organ damage.


Assuntos
Isquemia/sangue , Isquemia/fisiopatologia , Microcirculação , Oxigênio/sangue , Pele/irrigação sanguínea , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa