Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Plant Mol Biol ; 114(4): 76, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888655

RESUMO

Cellulose synthase 5 (CESA5) and CESA6 are known to share substantial functional overlap. In the zinc-finger domain (ZN) of CESA5, there are five amino acid (AA) mismatches when compared to CESA6. These mismatches in CESA5 were replaced with their CESA6 counterparts one by one until all were replaced, generating nine engineered CESA5s. Each N-terminal enhanced yellow fluorescent protein-tagged engineered CESA5 was introduced to prc1-1, a cesa6 null mutant, and resulting mutants were subjected to phenotypic analyses. We found that five single AA-replaced CESA5 proteins partially rescue the prc1-1 mutant phenotypes to different extents. Multi-AA replaced CESA5s further rescued the mutant phenotypes in an additive manner, culminating in full recovery by CESA5G43R + S49T+S54P+S80A+Y88F. Investigations in cellulose content, cellulose synthase complex (CSC) motility, and cellulose microfibril organization in the same mutants support the results of the phenotypic analyses. Bimolecular fluorescence complementation assays demonstrated that the level of homodimerization in every engineered CESA5 is substantially higher than CESA5. The mean fluorescence intensity of CSCs carrying each engineered CESA5 fluctuates with the degree to which the prc1-1 mutant phenotypes are rescued by introducing a corresponding engineered CESA5. Taken together, these five AA mismatches in the ZNs of CESA5 and CESA6 cooperatively modulate the functional properties of these CESAs by controlling their homodimerization capacity, which in turn imposes proportional changes on the incorporation of these CESAs into CSCs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glucosiltransferases , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Dedos de Zinco , Celulose/metabolismo , Fenótipo , Multimerização Proteica , Mutação , Sequência de Aminoácidos
2.
Mikrochim Acta ; 191(6): 334, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758362

RESUMO

Single nucleotide polymorphism (SNP) biosensors are emerging rapidly for their promising applications in human disease prevention diagnosis, treatment, and prognosis. However, it remains a bottleneck in equipping simple and stable biosensors with the traits of high sensitivity, non-enzyme, and low cost. Double base mismatches mediated chain displacement reactions have attracted fascinating advantages of tailorable thermodynamics stability, non-enzyme, and excellent assembly compliance to involvement in SNP identification. As the base mismatch position and amount in DNA sequence can be artificially adjusted, it provides plenty of selectivity and specificity for exploring perfect biosensors. Herein, a biosensor with double base mismatches mediated catalytic hairpin assembly (CHA) is designed via one base mismatch in the toehold domain and the other base mismatch in the stem sequence of hairpin 1 (H1) by triggering CHA reaction to achieve selective amplification of the mutation target (MT) and fluorescence resonance energy transfer (FRET) effect that is composed of Cy3 and Cy5 terminally attached H1 and hairpin 2 (H2). Depending on the rationally designed base mismatch position and toehold length, the fabricated biosensors show superior SNP detection performance, exhibiting a good linearity with high sensitivity of 6.6 fM detection limit and a broad detection abundance of 1%. The proposed biosensor can be used to detect the KRAS mutation gene in real samples and obtain good recoveries between 106 and 116.99%. Remarkably, these extendible designs of base mismatches can be used for more types of SNP detection, providing flexible adjustment based on base mismatch position and toehold length variations, especially for their thermodynamic model for DNA-strand displacement reactions.


Assuntos
Pareamento Incorreto de Bases , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Técnicas Biossensoriais/métodos , Humanos , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção , Sequências Repetidas Invertidas , DNA/química , DNA/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Catálise
3.
Sensors (Basel) ; 24(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793864

RESUMO

This paper proposes a dual-loop discrete-time adaptive control (DDAC) method for three-phase PWM rectifiers, which considers inductance-parameter-mismatched and DC load disturbances. A discrete-time model of the three-phase PWM rectifier is established using the forward Euler discretization method, and a dual-loop discrete-time feedback linearization control (DDFLC) is given. Based on the DDFLC, the DDAC is designed. Firstly, an adaptive inductance disturbance observer (AIDO) based on the gradient descent method is proposed in the current control loop. The AIDO is used to estimate lump disturbances caused by mismatched inductance parameters and then compensate for these disturbances in the current controller, ensuring its strong robustness to inductance parameters. Secondly, a load parameter adaptive law (LPAL) based on the discrete-time Lyapunov theory is proposed for the voltage control loop. The LPAL estimates the DC load parameter in real time and subsequently adjusts it in the voltage controller, achieving DC load adaptability. Finally, simulation and experimental results show that the DDAC exhibits better steady and dynamic performances, less current harmonic content than the DDFLC and the dual-loop discrete-time PI control (DDPIC), and a stronger robustness to inductance parameters and DC load disturbances.

4.
Clin Linguist Phon ; : 1-18, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755740

RESUMO

The alveolar lateral is phonetically and phonologically complex. Previous studies have shown that /l/ is one of the last segments to be acquired by typically developing Portuguese children. However, little is known about how Portuguese children with atypical development acquire /l/. In this paper, we investigate the acquisition of /l/ by Portuguese children with protracted phonological development (DLD; SSD). We explore the effect of syllable structure and segmental properties in the acquisition of /l/ and describe mismatches used for target /l/, thus contributing empirical evidence to the ongoing discussion on differential diagnoses for children with primary phonological disorders. Our results show that the lateral is more problematic in SSD than in DLD, with the manner of articulation being more problematic than its place. A syllable-segment interface effect was attested. Mismatches showed a preference for [w, ɾ, ø]. The results are discussed considering their implications for clinical practice and the role of target phonetic and phonological properties in the /l/ acquisition path.

5.
Proc Biol Sci ; 290(1990): 20221847, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629108

RESUMO

Species respond idiosyncratically to environmental variation, which may generate phenological mismatches. We assess the consequences of such mismatches for solitary bees. During 9 years, we studied flowering phenology and nesting phenology and demography of five wood-nesting solitary bee species representing a broad gradient of specialization/generalization in the use of floral resources. We found that the reproductive performance and population growth rate of bees tended to be lower with increasing nesting-flowering mismatches, except for the most generalized bee species. Our findings help elucidate the role of phenological mismatches for the demography of wild pollinators, which perform key ecosystem functions and provide important services for humanity. Furthermore, if climate change increases phenological mismatches in this system, we expect negative consequences of climate change for specialist bees.


Assuntos
Ecossistema , Reprodução , Abelhas , Animais , Crescimento Demográfico , Mudança Climática , Polinização , Flores
6.
J Med Virol ; 95(1): e28241, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263448

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC) Omicron (B.1.1.529) has rapidly spread around the world, presenting a new threat to global public human health. Due to the large number of mutations accumulated by SARS-CoV-2 Omicron, concerns have emerged over potentially reduced diagnostic accuracy of reverse-transcription polymerase chain reaction (RT-qPCR), the gold standard diagnostic test for diagnosing coronavirus disease 2019 (COVID-19). Thus, we aimed to assess the impact of the currently endemic Omicron sublineages BA.4 and BA.5 on the integrity and sensitivity of RT-qPCR assays used for coronavirus disease 2019 (COVID-19) diagnosis via in silico analysis. We employed whole genome sequencing data and evaluated the potential for false negatives or test failure due to mismatches between primers/probes and the Omicron VoC viral genome. METHODS: In silico sensitivity of 12 RT-qPCR tests (containing 30 primers and probe sets) developed for detection of SARS-CoV-2 reported by the World Health Organization (WHO) or available in the literature, was assessed for specifically detecting SARS-CoV-2 Omicron BA.4 and BA.5 sublineages, obtained after removing redundancy from publicly available genomes from National Center for Biotechnology Information (NCBI) and Global Initiative on Sharing Avian Influenza Data (GISAID) databases. Mismatches between amplicon regions of SARS-CoV-2 Omicron VoC and primers and probe sets were evaluated, and clustering analysis of corresponding amplicon sequences was carried out. RESULTS: From the 1164 representative SARS-CoV-2 Omicron VoC BA.4 sublineage genomes analyzed, a substitution in the first five nucleotides (C to T) of the amplicon's 3'-end was observed in all samples resulting in 0% sensitivity for assays HKUnivRdRp/Hel (mismatch in reverse primer) and CoremCharite N (mismatch in both forward and reverse primers). Due to a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC), the sensitivity of the ChinaCDC N assay was at 0.69%. The 10 nucleotide mismatches in the reverse primer resulted in 0.09% sensitivity for Omicron sublineage BA.4 for Thai N assay. Of the 1926 BA.5 sublineage genomes, HKUnivRdRp/Hel assay also had 0% sensitivity. A sensitivity of 3.06% was observed for the ChinaCDC N assay because of a mismatch in the forward primer's 5'-end (3-nucleotide substitution, GGG to AAC). Similarly, due to the 10 nucleotide mismatches in the reverse primer, the Thai N assay's sensitivity was low at 0.21% for sublineage BA.5. Further, eight assays for BA.4 sublineage retained high sensitivity (more than 97%) and 9 assays for BA.5 sublineage retained more than 99% sensitivity. CONCLUSION: We observed four assays (HKUnivRdRp/Hel, ChinaCDC N, Thai N, CoremCharite N) that could potentially result in false negative results for SARS-CoV-2 Omicron VoCs BA.4 and BA.5 sublineages. Interestingly, CoremCharite N had 0% sensitivity for Omicron Voc BA.4 but 99.53% sensitivity for BA.5. In addition, 66.67% of the assays for BA.4 sublineage and 75% of the assays for BA.5 sublineage retained high sensitivity. Further, amplicon clustering and additional substitution analysis along with sensitivity analysis could be used for the modification and development of RT-qPCR assays for detecting SARS-CoV-2 Omicron VoC sublineages.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Primers do DNA , Nucleotídeos , Sequenciamento Completo do Genoma
7.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674433

RESUMO

Low-level tumor somatic DNA mutations in tissue and liquid biopsies obtained from cancer patients can have profound implications for development of metastasis, prognosis, choice of treatment, follow-up, or early cancer detection. Unless detected, such low-frequency DNA alterations can misinform patient management decisions or become missed opportunities for personalized medicine. Next-generation sequencing technologies and digital-PCR can resolve low-level mutations but require access to specialized instrumentation, time, and resources. Enzymatic-based approaches to detection of low-level mutations provide a simple, straightforward, and affordable alternative to enrich and detect such alterations and is broadly available to low-resource laboratory settings. This review summarizes the traditional uses of enzymatic mutation detection and describes the latest exciting developments, potential, and applications with specific reference to the field of liquid biopsy in cancer.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Biópsia Líquida/métodos , DNA de Neoplasias , Mutação , Reação em Cadeia da Polimerase/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biomarcadores Tumorais/genética
8.
Small ; 18(12): e2105890, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35072345

RESUMO

This work reports a molecular-scale capacitance effect of the double helical nucleic acid duplex structure for the first time. By quantitatively conducting large sample measurements of the electrostatic field effect using a type of high-accuracy graphene transistor biosensor, an unusual charge-transport behavior is observed in which the end-immobilized nucleic acid duplexes can store a part of ionization electrons like molecular capacitors, other than electric conductors. To elucidate this discovery, a cascaded capacitive network model is proposed as a novel equivalent circuit of nucleic acid duplexes, expanding the point-charge approximation model, by which the partial charge-transport observation is reasonably attributed to an electron-redistribution behavior within the capacitive network. Furthermore, it is experimentally confirmed that base-pair mismatches hinder the charge transport in double helical duplexes, and lead to directly identifiable alterations in electrostatic field effects. The bioelectronic principle of mismatch impact is also self-consistently explained by the newly proposed capacitive network model. The mesoscopic nucleic acid capacitance effect may enable a new kind of label-free nucleic acid analysis tool based on electronic transistor devices. The in situ and real-time nucleic acid detections for virus biomarkers, somatic mutations, and genome editing off-target may thus be predictable.


Assuntos
Técnicas Biossensoriais , Grafite , Ácidos Nucleicos , Capacitância Elétrica , Grafite/química , Transistores Eletrônicos
9.
Bioorg Med Chem ; 76: 117094, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410206

RESUMO

DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.


Assuntos
Nanotecnologia , Neoplasias , Humanos , Ligantes , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , DNA
10.
BMC Bioinformatics ; 22(1): 51, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549041

RESUMO

BACKGROUND: An inverted repeat is a DNA sequence followed downstream by its reverse complement, potentially with a gap in the centre. Inverted repeats are found in both prokaryotic and eukaryotic genomes and they have been linked with countless possible functions. Many international consortia provide a comprehensive description of common genetic variation making alternative sequence representations, such as IUPAC encoding, necessary for leveraging the full potential of such broad variation datasets. RESULTS: We present IUPACPAL, an exact tool for efficient identification of inverted repeats in IUPAC-encoded DNA sequences allowing also for potential mismatches and gaps in the inverted repeats. CONCLUSION: Within the parameters that were tested, our experimental results show that IUPACPAL compares favourably to a similar application packaged with EMBOSS. We show that IUPACPAL identifies many previously unidentified inverted repeats when compared with EMBOSS, and that this is also performed with orders of magnitude improved speed.


Assuntos
Genoma , Células Procarióticas , Sequências Repetitivas de Ácido Nucleico , Sequência de Bases , Sequências Repetidas Invertidas , Sequências Repetitivas de Ácido Nucleico/genética
11.
Glob Chang Biol ; 27(2): 257-269, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33084162

RESUMO

Temperature has numerous effects on the structure and dynamics of ecological communities. Yet, there is no general trend or consensus on the magnitude and directions of these effects. To fill this gap, we propose a mechanistic framework based on key biological rates that predicts how temperature influences biomass distribution and trophic control in food webs. We show that these predictions arise from thermal mismatches between biological rates and across trophic levels. We couple our theory with experimental data for a wide range of species and find that warming should lead to top-heavier terrestrial food chains and stronger top-down control in aquatic environments. We then derive predictions for the effects of temperature on herbivory and validate them with data on stream grazers. Our study provides a mechanistic explanation of thermal effects on consumer-resource systems which is crucial to better understand the biogeography and the consequences of global warming on trophic dynamics.


Assuntos
Cadeia Alimentar , Aquecimento Global , Biomassa , Ecossistema , Herbivoria , Temperatura
12.
Mol Cell Probes ; 56: 101707, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609730

RESUMO

BACKGROUND: DNA mismatches can affect the efficiency of PCR techniques if the intended target has mismatches in primer or probe regions. The accepted rule is that mismatches are detrimental as they reduce the hybridization temperatures, yet a more quantitative assessment is rarely performed. METHODS: We calculate the hybridization temperatures of primer/probe sets after aligning to SARS-CoV-2, SARS-CoV-1 and non-SARS genomes, considering all possible combinations of single, double and triple consecutive mismatches. We consider the mismatched hybridization temperature within a range of 5 ∘C to the fully matched reference temperature. RESULTS: We obtained the alignments of 19 PCR primers sets that were recently reported for the detection of SARS-CoV-2 and to 21665 SARS-CoV-2 genomes as well as 323 genomes of other viruses of the coronavirus family of which 10 are SARS-CoV-1. We find that many incompletely aligned primers become fully aligned to most of the SARS-CoV-2 when mismatches are considered. However, we also found that many cross-align to SARS-CoV-1 and non-SARS genomes. CONCLUSIONS: Some primer/probe sets only align substantially to most SARS-CoV-2 genomes if mismatches are taken into account. Unfortunately, by the same mechanism, almost 75% of these sets also align to some SARS-CoV-1 and non-SARS viruses. It is therefore recommended to consider mismatch hybridization for the design of primers whenever possible, especially to avoid undesired cross-reactivity.


Assuntos
Pareamento Incorreto de Bases , Primers do DNA/metabolismo , Sondas de DNA/metabolismo , DNA Viral/metabolismo , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/genética , Genoma Viral , Alinhamento de Sequência , Temperatura
13.
Mol Cell Probes ; 58: 101748, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146663

RESUMO

Covid-19 disease caused by SARS-CoV-2 is still being transmitted in developed and developing countries irrespective of healthcare setups. India with 1.3 billion people in the world is severely affected by Covid-19 with 11.3 million cases and 157 000 deaths so far. We have assessed the mismatches in WHO recommended rRT-PCR assays primer and probe binding regions against SARS-CoV-2 Indian genome sequences through in-silico bioinformatics analysis approach. Primers and probe sequences belonging to CN-CDC-ORF1ab from China and HKU-ORF1b from Hong Kong targeting ORF1ab gene while NIH-TH-N from Thailand, HKU-N from Hong Kong and US-CDCN-2 from USA targeting N genes displayed accurate matches (>98.3%) with the 2019 novel corona virus sequences from India. On the other hand, none of the genomic sequences displayed exact match with the primer/probe sequences belonging to Charité-ORF1b from Germany targeting ORF1ab gene. We think it will be worthwhile to release this information to the clinical and medical communities working in Indian Covid-19 frontline taskforce to tackle the recently emerging Covid-19 outbreaks as of March-2021.


Assuntos
COVID-19/diagnóstico , Simulação por Computador , Genoma Viral/genética , Mutação , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Primers do DNA/genética , Sondas de DNA/genética , Surtos de Doenças , Humanos , Índia/epidemiologia , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
14.
J Environ Manage ; 299: 113605, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454203

RESUMO

Multifunctional cultivated land has both sides of supply and demand, and their matches are very important to boost the high-quality development of agriculture and rural areas. The supply-demand match index and GIS spatial analysis were employed to explore the supply-demand mismatches and synergic strategies of multifunctional cultivated land. Taking the Wuhan Metropolitan Area (WMA), China as an example, we obtained the following results: (1) There were obvious supply-demand mismatches of multifunctional cultivated land in the production function, ecological function, and landscape culture function. The spatial distribution of supply-demand mismatches of the three different functions of cultivated land is different. The supply of cultivated land production function is less than the demand, while the supply of landscape culture function is greater than the demand. The supply matches the demand of cultivated land in the ecological function. (2) The supply-demand mismatches of multifunctional cultivated land have scale effects. From the 1 km × 1 km grid scale to the township, county (district), and prefecture-level city scales, the proportion of deficit regions of production function and ecological function decreases with increasing scale. In contrast, the deficit regions of landscape culture function are always concentrated in the center of the WMA. It is considered that we should improve the supply of cultivated land in the production function, protect ecological function and enhance the demand of landscape culture function. Moreover, the management of multifunctional cultivated land needs to strengthen the multiscale spatial linkage and differential strategies of the supply side and demand side.


Assuntos
Agricultura , Conservação dos Recursos Naturais , China , Cidades , Análise Espacial
15.
Mol Ecol ; 29(13): 2349-2358, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474976

RESUMO

Several New World atheriniforms have been recognized as temperature-dependent sex determined (TSD) and yet possess a genotypic sex determinant (amhy) which is primarily functional at mid-range temperatures. In contrast, little is known about the sex determination in Old World atheriniforms, even though such knowledge is crucial to understand the evolution of sex determination mechanisms in fishes and to model the effects of global warming and climate change on their populations. This study examined the effects of water temperature on sex determination of an Old World atheriniform, the cobaltcap silverside Hypoatherina tsurugae, in which we recently described an amhy homologue. We first assessed the occurrence of phenotypic/genotypic sex mismatches in wild specimens from Tokyo Bay for three years (2014-2016) and used otolith analysis to estimate their birth dates and approximate thermal history during the presumptive period of sex determination. Phenotypic sex ratios became progressively biased towards males (47.3%-78.2%) during the period and were associated with year-to-year increases in the frequency of XX-males (7.3%-52.0%) and decreases in XY/YY-females (14.5%-0%). The breeding season had similar length but was delayed by about 1 month per year between 2014 and 2016, causing larvae to experience higher temperatures during the period of sex determination from year to year. Larval rearing experiments confirmed increased likelihood of feminization and masculinization at low and high temperatures, respectively. The results suggest that cobaltcap silverside has TSD, or more specifically the coexistence of genotypic and environmental sex determinants, and that it affects sex ratios in wild populations.


Assuntos
Peixes/genética , Processos de Determinação Sexual , Sexo , Animais , Feminino , Peixes/fisiologia , Genótipo , Masculino , Processos de Determinação Sexual/genética , Razão de Masculinidade , Temperatura
16.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759818

RESUMO

The current COronaVIrus Disease 2019 (COVID-19) pandemic started in December 2019. COVID-19 cases are confirmed by the detection of SARS-CoV-2 RNA in biological samples by RT-qPCR. However, limited numbers of SARS-CoV-2 genomes were available when the first RT-qPCR methods were developed in January 2020 for initial in silico specificity evaluation and to verify whether the targeted loci are highly conserved. Now that more whole genome data have become available, we used the bioinformatics tool SCREENED and a total of 4755 publicly available SARS-CoV-2 genomes, downloaded at two different time points, to evaluate the specificity of 12 RT-qPCR tests (consisting of a total of 30 primers and probe sets) used for SARS-CoV-2 detection and the impact of the virus' genetic evolution on four of them. The exclusivity of these methods was also assessed using the human reference genome and 2624 closely related other respiratory viral genomes. The specificity of the assays was generally good and stable over time. An exception is the first method developed by the China Center for Disease Control and prevention (CDC), which exhibits three primer mismatches present in 358 SARS-CoV-2 genomes sequenced mainly in Europe from February 2020 onwards. The best results were obtained for the assay of Chan et al. (2020) targeting the gene coding for the spiking protein (S). This demonstrates that our user-friendly strategy can be used for a first in silico specificity evaluation of future RT-qPCR tests, as well as verifying that the former methods are still capable of detecting circulating SARS-CoV-2 variants.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Genoma Viral , Pneumonia Viral/diagnóstico , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Bases de Dados Genéticas , Humanos , Fases de Leitura Aberta/genética , Pandemias , Pneumonia Viral/virologia , Polimorfismo de Nucleotídeo Único , RNA Viral/análise , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2 , Sensibilidade e Especificidade , Sequenciamento Completo do Genoma
17.
Glob Chang Biol ; 25(8): 2544-2559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31152499

RESUMO

Substantial interannual variability in marine fish recruitment (i.e., the number of young fish entering a fishery each year) has been hypothesized to be related to whether the timing of fish spawning matches that of seasonal plankton blooms. Environmental processes that control the phenology of blooms, such as stratification, may differ from those that influence fish spawning, such as temperature-linked reproductive maturation. These different controlling mechanisms could cause the timing of these events to diverge under climate change with negative consequences for fisheries. We use an earth system model to examine the impact of a high-emissions, climate-warming scenario (RCP8.5) on the future spawning time of two classes of temperate, epipelagic fishes: "geographic spawners" whose spawning grounds are defined by fixed geographic features (e.g., rivers, estuaries, reefs) and "environmental spawners" whose spawning grounds move responding to variations in environmental properties, such as temperature. By the century's end, our results indicate that projections of increased stratification cause spring and summer phytoplankton blooms to start 16 days earlier on average (±0.05 days SE) at latitudes >40°N. The temperature-linked phenology of geographic spawners changes at a rate twice as fast as phytoplankton, causing these fishes to spawn before the bloom starts across >85% of this region. "Extreme events," defined here as seasonal mismatches >30 days that could lead to fish recruitment failure, increase 10-fold for geographic spawners in many areas under the RCP8.5 scenario. Mismatches between environmental spawners and phytoplankton were smaller and less widespread, although sizable mismatches still emerged in some regions. This indicates that range shifts undertaken by environmental spawners may increase the resiliency of fishes to climate change impacts associated with phenological mismatches, potentially buffering against declines in larval fish survival, recruitment, and fisheries. Our model results are supported by empirical evidence from ecosystems with multidecadal observations of both fish and phytoplankton phenology.


Assuntos
Mudança Climática , Fitoplâncton , Animais , Ecossistema , Pesqueiros , Peixes , Estações do Ano
18.
Clin Transplant ; 33(4): e13508, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30821002

RESUMO

BACKGROUND: Assessment of human leukocyte antigen (HLA) matching by using high-resolution allele typing and knowledge of HLA molecule structure may lead to better prediction of de novo donor-specific antibody (dnDSA) development. METHODS: We conducted a single-center cohort study among 150 non-sensitized first kidney transplant recipients to compare the association between antigenic (Ag), allelic (Al), eplet (Ep), amino acid (AAMS) HLA matching and electrostatic (EMS) and hydrophobic (HMS) mismatch scores, and the development of dnDSA. RESULTS: After a mean follow-up time of 49.3 ± 17.7 months, 18 patients (12%) developed dnDSA. The number of HLA mismatches (MM) was significantly associated with the development of dnDSA. The optimal threshold, determined by Harrell's C-index, varied according to the method (5 MM for Ag, P = 0.006; 6 for Al, P = 0.009; 22 for Ep, P = 0.005; 42 for AAMS, P = 0.0007; 45 for EMS, P = 0.009 and 44 for HMS, P = 0.026). C-indices were similar for all matching approaches, suggesting a similar prediction of dnDSA development. CONCLUSION: In this cohort of low immunological risk transplant patients, the use of Al or Ep matching did not improve the prediction of dnDSA development in comparison with the traditional approach.


Assuntos
Epitopos/imunologia , Sobrevivência de Enxerto/imunologia , Antígenos HLA/imunologia , Teste de Histocompatibilidade/métodos , Isoanticorpos/imunologia , Transplante de Rim/métodos , Doadores de Tecidos/provisão & distribuição , Adulto , Alelos , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco
19.
Ecol Lett ; 21(5): 655-664, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575658

RESUMO

Understanding how changes in temperature affect interspecific competition is critical for predicting changes in ecological communities with global warming. Here, we develop a theoretical model that links interspecific differences in the temperature dependence of resource acquisition and growth to the outcome of pairwise competition in phytoplankton. We parameterised our model with these metabolic traits derived from six species of freshwater phytoplankton and tested its ability to predict the outcome of competition in all pairwise combinations of the species in a factorial experiment, manipulating temperature and nutrient availability. The model correctly predicted the outcome of competition in 72% of the pairwise experiments, with competitive advantage determined by difference in thermal sensitivity of growth rates of the two species. These results demonstrate that metabolic traits play a key role in determining how changes in temperature influence interspecific competition and lay the foundation for mechanistically predicting the effects of warming in complex, multi-species communities.


Assuntos
Aquecimento Global , Fitoplâncton , Biota , Água Doce , Temperatura
20.
J Biol Chem ; 291(10): 4928-38, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26709229

RESUMO

Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity.


Assuntos
Pareamento Incorreto de Bases , Proteínas de Ciclo Celular/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Sequência de Bases , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa