Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614079

RESUMO

Particulate matter (PM) exposure increases reactive oxygen species (ROS) levels. It can lead to inflammatory responses and damage of the mitochondria thus inducing cell death. Recently, it has been shown that potassium channels (mitoK) located in the inner mitochondrial membrane are involved in cytoprotection, and one of the mechanisms involves ROS. To verify the cytoprotective role of mitoBKCa, we performed a series of experiments using a patch-clamp, transepithelial electrical resistance assessment (TEER), mitochondrial respiration measurements, fluorescence methods for the ROS level and mitochondrial membrane potential assessment, and cell viability measurements. In the human bronchial epithelial cell model (16HBE14σ), PM < 4 µm in diameter (SRM-PM4.0) was used. We observed that PM decreased TEER of HBE cell monolayers. The effect was partially abolished by quercetin, a mitoBKCa opener. Consequently, quercetin decreased the mitochondrial membrane potential and increased mitochondrial respiration. The reduction of PM-induced ROS level occurs both on cellular and mitochondrial level. Additionally, quercetin restores HBE cell viability after PM administration. The incubation of cells with PM substantially reduced the mitochondrial function. Isorhamnetin had no effect on TEER, the mitoBKCa activity, respiratory rate, or mitochondrial membrane potential. Obtained results indicate that PM has an adverse effect on HBE cells at the cellular and mitochondrial level. Quercetin is able to limit the deleterious effect of PM on barrier function of airway epithelial cells. We show that the effect in HBE cells involves mitoBKCa channel-activation. However, quercetin's mechanism of action is not exclusively determined by modulation of the channel activity.


Assuntos
Material Particulado , Quercetina , Humanos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo
2.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072205

RESUMO

Mitochondria play a key role in energy metabolism within the cell. Potassium channels such as ATP-sensitive, voltage-gated or large-conductance Ca2+-regulated channels have been described in the inner mitochondrial membrane. Several hypotheses have been proposed to describe the important roles of mitochondrial potassium channels in cell survival and death pathways. In the current study, we identified two populations of mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channels in human bronchial epithelial (HBE) cells. The biophysical properties of the channels were characterized using the patch-clamp technique. We observed the activity of the channel with a mean conductance close to 285 pS in symmetric 150/150 mM KCl solution. Channel activity was increased upon application of the potassium channel opener NS11021 in the micromolar concentration range. The channel activity was completely inhibited by 1 µM paxilline and 300 nM iberiotoxin, selective inhibitors of the BKCa channels. Based on calcium and iberiotoxin modulation, we suggest that the C-terminus of the protein is localized to the mitochondrial matrix. Additionally, using RT-PCR, we confirmed the presence of α pore-forming (Slo1) and auxiliary ß3-ß4 subunits of BKCa channel in HBE cells. Western blot analysis of cellular fractions confirmed the mitochondrial localization of α pore-forming and predominately ß3 subunits. Additionally, the regulation of oxygen consumption and membrane potential of human bronchial epithelial mitochondria in the presence of the potassium channel opener NS11021 and inhibitor paxilline were also studied. In summary, for the first time, the electrophysiological and functional properties of the mitoBKCa channel in a bronchial epithelial cell line were described.


Assuntos
Brônquios/metabolismo , Cálcio/metabolismo , Células Epiteliais/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Consumo de Oxigênio , Potássio/metabolismo , Biofísica , Sobrevivência Celular , Eletrofisiologia , Metabolismo Energético , Epitélio/metabolismo , Humanos , Indóis/química , Potencial da Membrana Mitocondrial , Potenciais da Membrana , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Técnicas de Patch-Clamp , Peptídeos/química , Domínios Proteicos
3.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370072

RESUMO

Potassium channel openers (KCOs) have been shown to play a role in cytoprotection through the activation of mitochondrial potassium channels. Recently, in several reports, a number of data has been described as off-target actions for KCOs. In the present study, we investigated the effects of BKCa channel openers CGS7181, CGS7184, NS1619, and NS004 in neuronal cells. For the purpose of this research, we used a rat brain, the mouse hippocampal HT22 cells, and the human astrocytoma U-87 MG cell line. We showed that CGS7184 activated the mitochondrial BKCa (mitoBKCa) channel in single-channel recordings performed on astrocytoma mitoplasts. Moreover, when applied to the rat brain homogenate or isolated rat brain mitochondria, CGS7184 increased the oxygen consumption rate, and can thus be considered a potentially cytoprotective agent. However, experiments on intact neuronal HT22 cells revealed that both CGS7181 and CGS7184 induced HT22 cell death in a concentration- and time-dependent manner. By contrast, we did not observe cell death when NS1619 or NS004 was applied. CGS7184 toxicity was not abolished by BKCa channel inhibitors, suggesting that the observed effects were independent of a BKCa-type channel activity. CGS7184 treatment resulted in an increase of cytoplasmic Ca2+ concentration that likely involved efflux from internal calcium stores and the activation of calpains (calcium-dependent proteases). The cytotoxic effect of the channel opener was partially reversed by a calpain inhibitor. Our data show that KCOs under study not only activate mitoBKCa channels from brain tissue, but also induce cell death when used in cellular models.


Assuntos
Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Proteínas Mitocondriais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Calpaína/metabolismo , Linhagem Celular Tumoral , Humanos , Indóis/toxicidade , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Masculino , Moduladores de Transporte de Membrana/toxicidade , Proteínas Mitocondriais/agonistas , Ratos , Ratos Wistar
4.
Neurotox Res ; 40(5): 1380-1392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057039

RESUMO

Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aß neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aß1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-ß2 subunit expression was determined using western blot analysis in Aß-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aß-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-ß2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-ß2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aß-induced neurotoxicity rat model, an effect that can be linked to increased expression of ß2 subunit.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Canais KATP/metabolismo , Canais KATP/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/farmacologia , Lipídeos/farmacologia , Masculino , Mitocôndrias , Ratos , Ratos Wistar
5.
Antioxidants (Basel) ; 11(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36290615

RESUMO

Luteolin (LUT) is a well-known flavonoid that exhibits a number of beneficial properties. Among these, it shows cardioprotective effects, as confirmed by numerous studies. However, its effect on mitochondrial potassium channels, the activation of which is related to cytoprotection, as well as on heart ischemia/reperfusion (I/R) damage prevention, has not yet been investigated. The large conductance calcium-regulated potassium channel (mitoBKCa) has been identified in both the mitochondria of the vascular endothelial cells, which plays a significant role in the functioning of the cardiovascular system under oxidative stress-related conditions, and in the mitochondria of cardiomyocytes, where it is deeply involved in cardiac protection against I/R injury. Therefore, the aim of this study was to explore the role of the mitoBKCa channel in luteolin-induced cytoprotection. A number of in vitro, in vivo, ex vivo and in silico studies have confirmed that luteolin activates this channel in the mitochondria of cardiomyocytes and endothelial cells, which in turn leads to the protection of the endothelium and a significant reduction in the extent of damage resulting from myocardial infarction, where this effect was partially abolished by the mitoBKCa channel blocker paxilline. In conclusion, these results suggest that luteolin has cardioprotective effects, at least in part, through the activation of the mitoBKCa channel, shedding light on a new putative mechanism of action.

6.
Front Physiol ; 12: 719753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759831

RESUMO

Ischemia-reperfusion (I/R) injury contributes to the morbidity and mortality of ischemic strokes. As an in vitro model, oxygen-glucose deprivation and reperfusion (OGD/R) exposure induces neuronal injury. Low-dose ethanol preconditioning (EtOH-PC) was reported to alleviate neuronal apoptosis during OGD/R. However, whether the mitochondrial BKCa (mitoBKCa) channel is involved in the neuroprotective effect of EtOH-PC during OGD/R is not clearly defined. This study attempts to explore the mediation of the mitoBKCa channel in the neuroprotective effect of EtOH-PC on OGD/R-induced neuronal apoptosis and the underlying mechanisms. OGD/R model was established using primary cortical neurons that were preincubated with ethanol. Subsequently, the cell viability was measured by CCK-8 assay, and the apoptotic cells were determined by TUNEL assay. Annexin V/7-AAD staining and mitochondrial membrane potential using JC-10 were detected by flow cytometry. Western blot analysis was performed to check the apoptosis-related proteins. In the mixed primary culture, 95% neurofilament-positive cells were cortical neurons. Low-dose EtOH-PC (10 mmol/L) for 24 h significantly attenuated the OGD2h/R24h-induced neuronal apoptosis through activating the BKCa channel. Further investigations suggested that ethanol pretreatment increased the mitochondrial membrane potential (MMP) and downregulated the production of cleaved caspase 3 in OGD/R-injured neurons by activating the mitoBKCa channel. Low-dose ethanol pretreatment significantly attenuated the OGD/R-induced neuronal apoptosis mediated by the mitoBKCa channel which modulated the mitochondrial function by impeding the uncontrolled opening of mitochondrial permeability transition pore (MPTP).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa