Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Physiol ; 602(2): 355-372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165402

RESUMO

This study aimed to determine which physiological factors impact net efficiency (ηnet) in oldest-old individuals at different stages of skeletal muscle disuse. To this aim, we examined ηnet, central haemodynamics, peripheral circulation, and peripheral factors (skeletal muscle fibre type, capillarization and concentration of mitochondrial DNA [mtDNA]). Twelve young (YG; 25 ± 2 years), 12 oldest-old mobile (OM; 87 ± 3 years), and 12 oldest-old immobile (OI; 88 ± 4 years) subjects performed dynamic knee extensor (KE) and elbow flexors (EF) exercise. Pulmonary oxygen uptake, photoplethysmography, Doppler ultrasound and muscle biopsies of the vastus lateralis and biceps brachii were used to assess central and peripheral adaptations to advanced ageing and disuse. Compared to the YG (12.1 ± 2.4%), the ηnet of lower-limb muscle was higher in the OM (17.6 ± 3.5%, P < 0.001), and lower in the OI (8.9 ± 1.9%, P < 0.001). These changes in ηnet during KE were coupled with significant peripheral adaptations, revealing strong correlations between ηnet and the proportion of type I muscle fibres (r = 0.82), as well as [mtDNA] (r = 0.77). No differences in ηnet were evident in the upper-limb muscles between YG, OM and OI. In view of the differences in limb-specific activity across the lifespan, these findings suggest that ηnet is reduced by skeletal muscle inactivity and not by chronological age, per se. Likewise, this study revealed that the age-related changes in ηnet are not a consequence of central or peripheral haemodynamic adaptations, but are likely a product of peripheral changes related to skeletal muscle fibre type and mitochondrial density. KEY POINTS: Although the effects of ageing and muscle disuse deeply impact the cardiovascular and skeletal muscle function, the combination of these factors on the mechanical efficiency are still a matter of debate. By measuring both upper- and lower-limb muscle function, which experience differing levels of disuse, we examined the influence of central and peripheral haemodynamics, and skeletal muscle factors linked to mechanical efficiency. Across the ages and degree of disuse, upper-limb muscles exhibited a preserved work economy. In the legs the oldest-old without mobility limitations exhibited an augmented mechanical efficiency, which was reduced in those with an impairment in ambulation. These changes in mechanical efficiency were associated with the proportion of type I muscle fibres. Recognition that the mechanical efficiency is not simply age-dependent, but the consequence of inactivity and subsequent skeletal muscle changes, highlights the importance of maintaining physical activity across the lifespan.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Idoso de 80 Anos ou mais , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Envelhecimento/fisiologia , Extremidade Inferior , DNA Mitocondrial
2.
EMBO J ; 39(13): e104073, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432379

RESUMO

Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi-site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90-95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.


Assuntos
Criopreservação , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Masculino , Camundongos
3.
Exp Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593224

RESUMO

The asymptote (critical power; CP) and curvature constant (W') of the hyperbolic power-duration relationship can predict performance within the severe-intensity exercise domain. However, the extent to which these parameters relate to skeletal muscle mitochondrial content and respiratory function is not known. Fifteen males (peak O2 uptake, 52.2 ± 8.7 mL kg-1 min-1; peak work rate, 366 ± 40 W; and gas exchange threshold, 162 ± 41 W) performed three to five constant-load tests to task failure for the determination of CP (246 ± 44 W) and W' (18.6 ± 4.1 kJ). Skeletal muscle biopsies were obtained from the vastus lateralis to determine citrate synthase (CS) activity, as a marker of mitochondrial content, and the ADP-stimulated respiration (P) and maximal electron transfer (E) through mitochondrial complexes (C) I-IV. The CP was positively correlated with CS activity (absolute CP, r = 0.881, P < 0.001; relative CP, r = 0.751, P = 0.001). The W' was not correlated with CS activity (P > 0.05). Relative CP was positively correlated with mass-corrected CI + IIE (r = 0.659, P = 0.038), with absolute CP being inversely correlated with CS activity-corrected CIVE (r = -0.701, P = 0.024). Relative W' was positively correlated with CS activity-corrected CI + IIP (r = 0.713, P = 0.021) and the phosphorylation control ratio (r = 0.661, P = 0.038). There were no further correlations between CP or W' and mitochondrial respiratory variables. These findings support the assertion that skeletal muscle mitochondrial oxidative capacity is positively associated with CP and that this relationship is strongly determined by mitochondrial content.

4.
Scand J Med Sci Sports ; 33(6): 872-881, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36779702

RESUMO

There is renewed interest in the potential for interval (INT) training to increase skeletal muscle mitochondrial content including whether the response differs from continuous (CONT) training. Comparisons of INT and CONT exercise are impacted by the manner in which protocols are "matched", particularly with respect to exercise intensity, as well as inter-individual differences in training responses. We employed single-leg cycling to facilitate a within-participant design and test the hypothesis that short-term INT training would elicit a greater increase in mitochondrial content than work- and intensity-matched CONT training. Ten young healthy adults (five males and five females) completed 12 training sessions over 4 weeks with each leg. Legs were randomly assigned to complete either 30 min of CONT exercise at a challenging sustainable workload (~50% single-leg peak power output; Wpeak) or INT exercise that involved 10 × 3-min bouts at the same absolute workload. INT bouts were interspersed with 1 min of recovery at 10% Wpeak and each CONT session ended with 10 min at 10% Wpeak. Absolute and mean intensity, total training time, and volume were thus matched between legs but the pattern of exercise differed. Contrary to our hypothesis, biomarkers of mitochondrial content including citrate synthase maximal activity, mitochondrial protein content and subsarcolemmal mitochondrial volume increased after CONT (p < 0.05) but not INT training. Both training modes increased single-leg Wpeak (p < 0.01) and time to exhaustion at 70% of single-leg Wpeak (p < 0.01). In a work- and intensity-matched comparison, short-term CONT training increased skeletal muscle mitochondrial content whereas INT training did not.


Assuntos
Perna (Membro) , Consumo de Oxigênio , Masculino , Adulto , Feminino , Humanos , Consumo de Oxigênio/fisiologia , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Mitocôndrias
5.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175862

RESUMO

This review provides an overview of the evidence regarding mtDNA and valid biomarkers for assessing mitochondrial adaptions. Mitochondria are small organelles that exist in almost all cells throughout the human body. As the only organelle, mitochondria contain their own DNA, mitochondrial DNA (mtDNA). mtDNA-encoded polypeptides are subunits of the enzyme complexes in the electron transport chain (ETC) that are responsible for production of ATP to the cells. mtDNA is frequently used as a biomarker for mitochondrial content, since changes in mitochondrial volume are thought to induce similar changes in mtDNA. However, some exercise studies have challenged this "gene-dosage theory", and have indicated that changes in mitochondrial content can adapt without changes in mtDNA. Thus, the aim of this scoping review was to summarize the studies that used mtDNA as a biomarker for mitochondrial adaptions and address the question as to whether changes in mitochondrial content, induce changes in mtDNA in response to aerobic exercise in the healthy skeletal muscle. The literature was searched in PubMed and Embase. Eligibility criteria included: interventional study design, aerobic exercise, mtDNA measurements reported pre- and postintervention for the healthy skeletal muscle and English language. Overall, 1585 studies were identified. Nine studies were included for analysis. Eight out of the nine studies showed proof of increased oxidative capacity, six found improvements in mitochondrial volume, content and/or improved mitochondrial enzyme activity and seven studies did not find evidence of change in mtDNA copy number. In conclusion, the findings imply that mitochondrial adaptions, as a response to aerobic exercise, can occur without a change in mtDNA copy number.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Músculo Esquelético/metabolismo , Exercício Físico , Biomarcadores/metabolismo , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo
6.
Am J Physiol Cell Physiol ; 323(2): C606-C616, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35785986

RESUMO

The impact of aerobic training on human skeletal muscle cell (HSkMC) mitochondrial metabolism is a significant research gap, critical to understanding the mechanisms by which exercise augments skeletal muscle metabolism. We therefore assessed mitochondrial content and capacity in fully differentiated CD56+ HSkMCs from lean active (LA) and sedentary individuals with obesity (OS) at baseline, as well as lean/overweight sedentary individuals (LOS) at baseline and following an 18-day aerobic training intervention. Participants had in vivo skeletal muscle PCr recovery rate by 31P-MRS (mitochondrial oxidative kinetics) and cardiorespiratory fitness (V̇o2max) assessed at baseline. Biopsies of the vastus lateralis were performed for the isolation of skeletal muscle stem cells. LOS individuals repeated all assessments posttraining. HSkMCs were evaluated for mitochondrial respiratory capacity by high-resolution respirometry. Data were normalized to two indices of mitochondrial content (CS activity and OXPHOS protein expression) and a marker of total cell count (quantity of DNA). LA individuals had significantly higher V̇o2max than OS and LOS-Pre training; however, no differences were observed in skeletal muscle mitochondrial capacity, nor in carbohydrate- or fatty acid-supported HSkMC respiratory capacity. Aerobic training robustly increased in vivo skeletal muscle mitochondrial capacity of LOS individuals, as well as carbohydrate-supported HSkMC respiratory capacity. Indices of mitochondrial content and total cell count were similar among the groups and did not change with aerobic training. Our findings demonstrate that bioenergetic changes induced with aerobic training in skeletal muscle in vivo are retained in HSkMCs in vitro without impacting mitochondrial content, suggesting that training improves intrinsic skeletal muscle mitochondrial capacity.


Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Carboidratos , Exercício Físico/fisiologia , Humanos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Células-Tronco
7.
Hum Genomics ; 15(1): 34, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099068

RESUMO

BACKGROUND: Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718). RESULTS: We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10-8), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the TMBIM1 gene (P = 3.0 × 10-8), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10-21) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition. CONCLUSION: These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/sangue , Proteínas de Ligação ao GTP/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-myb/genética , Adulto , Idoso , Linhagem da Célula/genética , DNA Mitocondrial/genética , Feminino , Predisposição Genética para Doença , Genoma Mitocondrial/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Sequenciamento do Exoma
8.
FASEB J ; 33(5): 6082-6098, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726106

RESUMO

TP53-induced glycolysis and apoptosis regulator (TIGAR), a glycolytic inhibitor, plays vital roles in regulating cellular metabolism and oxidative stress. However, the role of highly expressed TIGAR in skeletal muscle remains unexplored. In the present study, TIGAR levels varied in different skeletal muscles and fibers. An exhaustive swimming test with a load corresponding to 5% of body weight was utilized in mice to assess the effects of TIGAR on exercise-induced fatigue and muscle damage. The running time and metabolic indicators were significantly greater in wild-type (WT) mice compared with TIGAR knockout (KO) mice. Poor exercise capacity was accompanied by decreased type IIA fibers in TIGAR KO mice. Decreased mitochondrial number and mitochondrial oxidative phosphorylation were observed more in TIGAR KO mice than in WT mice, which were involved in sirtuin 1 (SIRT1)-mediated deacetylation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and resveratrol treatment in TIGAR KO mice can increase mitochondrial content and exercise time. Much more TIGAR was also detected in mitochondria during exhaustive exercise. In addition, TIGAR, rather than mitochondria-targeted TIGAR achieved by in vitro plasmid transfection, promoted SIRT1-PGC1α pathway. Glutathione S-transferase-TIGAR pull-down assay followed by liquid chromatography mass spectrometry found that TIGAR interacted with ATP synthase F1 subunit α (ATP5A1), and its binding to ATP5A1 increased during exhaustive exercise. Overexpression of mitochondrial-TIGAR enhanced ATP generation, maintained mitochondrial membrane potential and reduced mitochondrial oxidative stress under hypoxia condition. Taken together, our results uncovered a novel role for TIGAR in mitochondrial regulation in fast-twitch oxidative skeletal muscle through SIRT1-PGC1α and translocation into mitochondria, which contribute to the increase in exercise endurance of mice.-Geng, J., Wei, M., Yuan, X., Liu, Z., Wang, X., Zhang, D., Luo, L., Wu, J., Guo, W., Qin, Z.-H. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Sirtuína 1/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Células HEK293 , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Músculo Esquelético/fisiologia , Estresse Oxidativo , Monoéster Fosfórico Hidrolases/genética , Esforço Físico , Ligação Proteica , Transporte Proteico
9.
Eur J Appl Physiol ; 120(1): 149-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707475

RESUMO

PURPOSE: To examine the relationship between changes in nuclear factor erythroid 2-related factor 2 (Nrf2) expression and markers of mitochondrial biogenesis in acutely and chronically exercised human skeletal muscle. METHODS: The impact of acute submaximal endurance (END) and supramaximal interval (Tabata) cycling on the upregulation of Nrf2 (and its downstream targets), nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (TFAM) mRNA expression was examined in healthy young males (n = 10). The relationship between changes in citrate synthase (CS) maximal activity and the protein content of Nrf2, heme oxygenase 1 (HO-1), NRF-1, and TFAM was also investigated following 4 weeks of Tabata in a separate group of males (n = 21). RESULTS: Nrf2, NRF-1, and HO-1 mRNA expression increased after acute exercise (p < 0.05), whereas the increase in superoxide dismutase 2 (SOD2) mRNA expression approached significance (p = 0.08). Four weeks of Tabata increased CS activity and Nrf2, NRF-1, and TFAM protein content (p < 0.05), but decreased HO-1 protein content (p < 0.05). Training-induced changes in Nrf2 protein were strongly correlated with NRF-1 (r = 0.63, p < 0.01). When comparing protein content changes between individuals with the largest (HI: + 23%) and smallest (LO: - 1%) observed changes in CS activity (n = 8 each), increases in Nrf2 and TFAM protein content were apparent in the HI group only (p < 0.02) with medium-to-large effect sizes for between-group differences in changes in Nrf2 (ηp2=0.15) and TFAM (ηp2 = 0.12) protein content. CONCLUSION: Altogether, our findings support a potential role for Nrf2 in exercise-induced mitochondrial biogenesis in human skeletal muscle.


Assuntos
Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/genética , Biogênese de Organelas , Condicionamento Físico Humano/métodos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem
10.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971810

RESUMO

As a major site of glucose uptake following a meal, skeletal muscle has an important role in whole-body glucose metabolism. Evidence in humans and animal models of insulin resistance and type 2 diabetes suggests that alterations in mitochondrial characteristics accompany the development of skeletal muscle insulin resistance. However, it is unclear whether changes in mitochondrial content, respiratory function, or substrate oxidation are central to the development of insulin resistance or occur in response to insulin resistance. Thus, this review will aim to evaluate the apparent conflicting information placing mitochondria as a key organelle in the development of insulin resistance in skeletal muscle.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Diabetes Mellitus Tipo 2/patologia , Humanos , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia
11.
J Muscle Res Cell Motil ; 40(1): 59-65, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30945134

RESUMO

The present study aimed to determine the impact of colon 26 adenocarcinoma (C26)-induced cancer cachexia on skeletal muscle mitochondrial respiration and content. Twelve male CD2F1 mice were injected with C26-cells (tumor bearing (TB) group), whereas 12 age-matched mice received PBS vehicle injection (non-tumor bearing (N-TB) group). Mitochondrial respiration was studied in saponin-permeabilized soleus myofibers. TB mice showed lower body weight (~ 20%) as well as lower soleus, gastrocnemius-plantaris complex and tibialis anterior masses versus N-TB mice (p < 0.05). Soleus maximal state III mitochondrial respiration was 20% lower (10 mM glutamate, 5 mM malate, 5 mM adenosine diphosphate; p < 0.05) and acceptor control ratio (state III/state II) was 15% lower in the TB vs. N-TB (p < 0.05), with the latter suggesting uncoupling. Lower VDAC protein content suggested reduced mitochondrial content in TB versus N-TB (p < 0.05). Skeletal muscle in C26-induced cancer cachexia exhibits reductions in: maximal mitochondrial respiration capacity, mitochondrial coupling and mitochondrial content.


Assuntos
Adenocarcinoma , Caquexia , Neoplasias do Colo , Mitocôndrias Musculares , Músculo Esquelético , Neoplasias Experimentais , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Animais , Caquexia/metabolismo , Caquexia/patologia , Caquexia/fisiopatologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/fisiopatologia , Masculino , Camundongos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia
12.
J Exp Biol ; 222(Pt 20)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31570512

RESUMO

Many amphibious fishes rely on terrestrial locomotion to accomplish essential daily tasks, but it is unknown whether terrestrial exercise improves the locomotor performance of fishes on land. Thus, we tested the hypothesis that terrestrial exercise improves locomotion in amphibious fishes out of water as a result of skeletal muscle remodeling. We compared the jumping performance of Kryptolebias marmoratus before and after an exercise training regimen, and assessed the muscle phenotype of control and exercise-trained fish. We found that exercise-trained fish jumped 41% farther and 48% more times before reaching exhaustion. Furthermore, exercise training resulted in the hypertrophy of red muscle fibers, and an increase in red muscle capillarity and aerobic capacity. Lactate accumulation after jumping indicates that white muscle is also important in powering terrestrial jumps. Overall, skeletal muscle in K. marmoratus is highly responsive to terrestrial exercise, and muscle plasticity may assist in the effective exploitation of terrestrial habitats by amphibious fishes.


Assuntos
Peixes/fisiologia , Locomoção/fisiologia , Condicionamento Físico Animal , Animais , Ácido Láctico/metabolismo , Músculo Esquelético/fisiologia , Fenótipo
13.
Am J Physiol Heart Circ Physiol ; 315(6): H1660-H1669, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30192630

RESUMO

Little is known about vascular mitochondrial respiratory function and the impact of age. Therefore, skeletal muscle feed arteries were harvested from young (33 ± 7 yr, n = 10), middle-aged (54 ± 5 yr, n = 10), and old (70 ± 7 yr, n = 10) subjects, and mitochondrial respiration as well as citrate synthase (CS) activity were assessed. Complex I (CI) and complex I + II (CI+II) state 3 respiration were greater in young (CI: 10.4 ± 0.8 pmol·s-1·mg-1 and CI+II: 12.4 ± 0.8 pmol·s-1·mg-1, P < 0.05) than middle-aged (CI: 7 ± 0.6 pmol·s-1·mg-1 and CI+II: 8.3 ± 0.5 pmol·s-1·mg-1) and old (CI: 7.2 ± 0.4 pmol·s-1·mg-1 and CI+II: 7.6 ± 0.5 pmol·s-1·mg-1) subjects and, as in the case of complex II (CII) state 3 respiration, were inversely correlated with age [ r = -0.56 (CI), r = -0.7 (CI+II), and r = 0.4 (CII), P < 0.05]. In contrast, state 4 respiration and mitochondria-specific superoxide levels were not different across groups. The respiratory control ratio was greater in young (2.2 ± 0.2, P < 0.05) than middle-aged and old (1.4 ± 0.1 and 1.1 ± 0.1, respectively) subjects and inversely correlated with age ( r = -0.71, P < 0.05). As CS activity was inversely correlated with age ( r = -0.54, P < 0.05), when normalized for mitochondrial content, the age-related differences and relationships with state 3 respiration were ablated. In contrast, mitochondrion-specific state 4 respiration was now lower in young (15 ± 1.4 pmol·s-1·mg-1·U CS-1, P < 0.05) than middle-aged and old (23.4 ± 3.6 and 27.9 ± 3.4 pmol·s-1·mg-1·U CS-1, respectively) subjects and correlated with age ( r = 0.46, P < 0.05). Similarly, superoxide/CS levels were lower in young (0.07 ± 0.01) than old (0.19 ± 0.41) subjects and correlated with age ( r = 0.44, P < 0.05). Therefore, with aging, vascular mitochondrial respiratory function declines, predominantly as a consequence of falling mitochondrial content. However, per mitochondrion, aging likely results in greater mitochondrion-derived oxidative stress, which may contribute to age-related vascular dysfunction. NEW & NOTEWORTHY This study determined, for the first time, that vascular mitochondrial oxidative respiratory capacity, oxidative coupling efficiency, and mitochondrial content fell progressively with advancing age. In terms of single mitochondrion-specific respiration, the age-related differences were completely ablated and the likelihood of free radical production increased progressively with advancing age. This study reveals that vascular mitochondrial respiratory capacity declines with advancing age, as a consequence of falling mitochondrial content, as does oxidative coupling efficiency.


Assuntos
Envelhecimento/metabolismo , Artérias/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Artérias/crescimento & desenvolvimento , Respiração Celular , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo
14.
J Cell Physiol ; 232(12): 3744-3761, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28177129

RESUMO

Strategies to treat cachexia are still at its infancy. Enhanced muscle protein breakdown and ubiquitin-proteasome system are common features of cachexia associated with chronic conditions including lung cancer (LC). Poly(ADP-ribose) polymerases (PARP), which play a major role in chromatin structure regulation, also underlie maintenance of muscle metabolism and body composition. We hypothesized that protein catabolism, proteolytic markers, muscle fiber phenotype, and muscle anabolism may improve in respiratory and limb muscles of LC-cachectic Parp-1-deficient (Parp-1-/- ) and Parp-2-/- mice. In diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) bearing mice (wild type, Parp-1-/- , and Parp-2-/- ), PARP activity (ADP-ribose polymers, pADPr), redox balance, muscle fiber phenotype, apoptotic nuclei, tyrosine release, protein ubiquitination, muscle-specific E3 ligases, NF-κB signaling pathway, markers of muscle anabolism (Akt, mTOR, p70S6K, and mitochondrial DNA) were evaluated along with body and muscle weights, and limb muscle force. Compared to wild type cachectic animals, in both respiratory and limb muscles of Parp-1-/- and Parp-2-/- cachectic mice: cancer induced-muscle wasting characterized by increased PARP activity, protein oxidation, tyrosine release, and ubiquitin-proteasome system (total protein ubiquitination, atrogin-1, and 20S proteasome C8 subunit) were blunted, the reduction in contractile myosin and atrophy of the fibers was attenuated, while no effects were seen in other structural features (inflammatory cells, internal or apoptotic nuclei), and markers of muscle anabolism partly improved. Activation of either PARP-1 or -2 is likely to play a role in muscle protein catabolism via oxidative stress, NF-κB signaling, and enhanced proteasomal degradation in cancer-induced cachexia. Therapeutic potential of PARP activity inhibition deserves attention.


Assuntos
Caquexia/etiologia , Neoplasias Pulmonares/complicações , Fibras Musculares Esqueléticas/enzimologia , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise , Animais , Apoptose , Biomarcadores/metabolismo , Caquexia/enzimologia , Caquexia/genética , Caquexia/patologia , Linhagem Celular Tumoral , Diafragma/enzimologia , Diafragma/patologia , Feminino , Genótipo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , NF-kappa B/metabolismo , Tamanho do Órgão , Fenótipo , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Fatores de Tempo , Ubiquitinação
15.
Reprod Biol Endocrinol ; 15(1): 26, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376894

RESUMO

BACKGROUND: The purpose of this study was to determine the mitochondrial content, and the oxidative and nitrosative stress of the placenta in women with gestational diabetes mellitus (GDM). METHODS: Full-term placentas from GDM and healthy pregnancies were collected following informed consent. The lipid peroxidation (TBARS) and oxidized protein (carbonyls) levels were determined by spectrophotometry, and 3-nitrotyrosine (3-NT), subunit IV of cytochrome oxidase (COX4), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and actin were determined by western blot, whereas ATPase activity was performed by determining the adenosine triphosphate (ATP) consumption using a High-performance liquid chromatography (HPLC) system. RESULTS: TBARS and carbonyls levels were lower in the placentas of women with GDM compared with the normal placentas (p < 0.001 and p < 0.05, respectively). Also, 3-NT/actin and AMPK/actin ratios were higher in GDM placentas than in the normal placentas (p = 0.03 and p = 0.012, respectively). Whereas COX4/actin ratio and ATPase activity were similar between GDM placentas and those controls. CONCLUSIONS: These data suggest that placentas with GDM are more protected against oxidative damage, but are more susceptible to nitrosative damage as compared to normal placentas. Moreover, the increased expression levels of AMPK in GDM placentas suggest that AMPK might have a role in maintaining the mitochondrial biogenesis at normal levels. TRIAL REGISTRATION: HGRL28072011 . Registered 28 July 2011.


Assuntos
Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Mitocôndrias/metabolismo , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia , Placenta/metabolismo , Adulto , Feminino , Humanos , Gravidez , Adulto Jovem
16.
Endocr Res ; 41(1): 49-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26513277

RESUMO

OBJECTIVES: The objectives of our study were to compare the mitochondrial enzyme activity between obese and non-obese children and to assess the association between mitochondrial DNA content and function and markers of metabolic syndrome. METHODS: Clinical and anthropometric data of obese and normal-weight children ages 2-18 years were collected. We collected buccal swabs for mitochondrial respiratory enzymes (complex I, IV, and Citrate Synthase). In obese children only, serum levels of metabolic parameters and mitochondrial DNA from mononuclear cells were quantitated. RESULTS: We recruited 75 obese and 65 normal-weight children. There was no difference in respiratory complex enzyme activity levels between obese and normal-weight subjects. In obese subjects, mitochondrial to nuclear DNA (mt/nDNA) ratio was significantly correlated with BMI Z-score and BMI percentile (p < 0.05, and p < 0.01, respectively), and the strength of this correlation was proportionate to the degree of obesity. We did not find any association between mt/nDNA ratio and metabolic parameters. We observed a significant positive association between complex IV activity and fasting insulin level (p < 0.05). Finally, fasting insulin explained 45% of the variation in the complex IV activity level (p < 0.05). CONCLUSION: Our findings indicate that mitochondrial DNA content is directly related to obesity, but not to the markers of metabolic syndrome/insulin resistance in children. Longitudinal studies involving larger samples are needed to confirm our findings and help elucidate the relationship between mitochondrial function, adiposity, and insulin resistance.


Assuntos
DNA Mitocondrial/análise , DNA Mitocondrial/fisiologia , Resistência à Insulina/genética , Obesidade Infantil/genética , Adolescente , Biomarcadores/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Peso Corporal Ideal/genética , Masculino
17.
Am J Physiol Regul Integr Comp Physiol ; 308(11): R927-34, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25855305

RESUMO

Skeletal muscle is extremely adaptable to a variety of metabolic challenges, as both traditional moderate-intensity endurance (ET) and high-intensity interval training (HIIT) increases oxidative potential in a coordinated manner. Although these responses have been clearly demonstrated in healthy individuals, it remains to be determined whether both produce similar responses in the context of hypertension, one of the most prevalent and costly diseases worldwide. Therefore, in the current study, we used the Dahl sodium-sensitive rat, a model of hypertension, to determine the molecular responses to 4 wk of either ET or HIIT in the red (RG) and white gastrocnemius (WG) muscles. In the RG, both ET and HIIT increased the content of electron transport chain proteins and increased succinate dehydrogenase (SDH) content in type I fibers. Although both intensities of exercise shifted fiber type in RG (increased IIA, decreased IIX), only HIIT was associated with a reduction in endothelial nitric oxide synthase and an increase in HIF-1α proteins. In the WG, both ET and HIIT increased markers of the electron transport chain; however, HIIT decreased SDH content in a fiber-specific manner. ET increased type IIA, decreased IIB fibers, and increased capillarization, while, in contrast, HIIT increased the percentage of IIB fibers, decreased capillary-to-fiber ratios, decreased endothelial nitric oxide synthase, and increased hypoxia inducible factor-1α (HIF-1α) protein. Altogether, these data show that unlike in healthy animals, ET and HIIT have divergent effects in the skeletal muscle of hypertensive rats. This suggests ET may be optimal at improving the oxidative capacity of skeletal muscle in animals with hypertension.


Assuntos
Hipertensão/fisiopatologia , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia , Resistência Física , Esforço Físico , Adaptação Fisiológica , Animais , Pressão Sanguínea , Capilares/metabolismo , Capilares/fisiopatologia , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Hipertensão/etiologia , Hipertensão/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Mitocôndrias Musculares/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Succinato Desidrogenase/metabolismo , Fatores de Tempo
18.
Scand J Med Sci Sports ; 25(1): e59-69, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24845952

RESUMO

High-intensity interval training (HIT) is known to increase mitochondrial content in a similar way as endurance training [60-90% of maximal oxygen uptake (VO2peak)]. Whether HIT increases the mitochondria's ability to oxidize lipids is currently debated. We investigated the effect of HIT on mitochondrial fat oxidation in skeletal muscle and adipose tissue. Mitochondrial oxidative phosphorylation (OXPHOS) capacity, mitochondrial substrate sensitivity (K(m)(app)), and mitochondrial content were measured in skeletal muscle and adipose tissue in healthy overweight subjects before and after 6 weeks of HIT (three times per week at 298 ± 21 W). HIT significantly increased VO2peak from 2.9 ± 0.2 to 3.1 ± 0.2 L/min. No differences were seen in maximal fat oxidation in either skeletal muscle or adipose tissue. K(m)(app) for octanoyl carnitine or palmitoyl carnitine were similar after training in skeletal muscle and adipose tissue. Maximal OXPHOS capacity with complex I- and II-linked substrates was increased after training in skeletal muscle but not in adipose tissue. In conclusion, 6 weeks of HIT increased VO2peak. Mitochondrial content and mitochondrial OXPHOS capacity were increased in skeletal muscle, but not in adipose tissue. Furthermore, mitochondrial fat oxidation was not improved in either skeletal muscle or adipose tissue.


Assuntos
Carnitina/análogos & derivados , Exercício Físico/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Sobrepeso/metabolismo , Palmitoilcarnitina/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Carnitina/metabolismo , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia
19.
Open Biol ; 14(1): 230279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228170

RESUMO

Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Diferenciação Celular , Dinâmica Mitocondrial/fisiologia
20.
J Physiol Sci ; 74(1): 8, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331728

RESUMO

The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.


Assuntos
Treino Aeróbico , Humanos , Ratos , Animais , Triglicerídeos , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Insulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Lactatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa