Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Cell ; 69(5): 729-743.e7, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499131

RESUMO

MCL-1 is a BCL-2 family protein implicated in the development and chemoresistance of human cancer. Unlike its anti-apoptotic homologs, Mcl-1 deletion has profound physiologic consequences, indicative of a broader role in homeostasis. We report that the BCL-2 homology 3 (BH3) α helix of MCL-1 can directly engage very long-chain acyl-CoA dehydrogenase (VLCAD), a key enzyme of the mitochondrial fatty acid ß-oxidation (FAO) pathway. Proteomic analysis confirmed that the mitochondrial matrix isoform of MCL-1 (MCL-1Matrix) interacts with VLCAD. Mcl-1 deletion, or eliminating MCL-1Matrix alone, selectively deregulated long-chain FAO, causing increased flux through the pathway in response to nutrient deprivation. Transient elevation in MCL-1 upon serum withdrawal, a striking increase in MCL-1 BH3/VLCAD interaction upon palmitic acid titration, and direct modulation of enzymatic activity by the MCL-1 BH3 α helix are consistent with dynamic regulation. Thus, the MCL-1 BH3 interaction with VLCAD revealed a separable, gain-of-function role for MCL-1 in the regulation of lipid metabolism.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ácido Palmítico/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Linhagem Celular , Camundongos , Camundongos Knockout , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Oxirredução , Estrutura Secundária de Proteína
2.
Subcell Biochem ; 101: 293-318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520311

RESUMO

Mitochondrial J-domain protein (JDP) co-chaperones orchestrate the function of their Hsp70 chaperone partner(s) in critical organellar processes that are essential for cell function. These include folding, refolding, and import of mitochondrial proteins, maintenance of mitochondrial DNA, and biogenesis of iron-sulfur cluster(s) (FeS), prosthetic groups needed for function of mitochondrial and cytosolic proteins. Consistent with the organelle's endosymbiotic origin, mitochondrial Hsp70 and the JDPs' functioning in protein folding and FeS biogenesis clearly descended from bacteria, while the origin of the JDP involved in protein import is less evident. Regardless of their origin, all mitochondrial JDP/Hsp70 systems evolved unique features that allowed them to perform mitochondria-specific functions. Their modes of functional diversification and specialization illustrate the versatility of JDP/Hsp70 systems and inform our understanding of system functioning in other cellular compartments.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
J Struct Biol ; 215(3): 107982, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268154

RESUMO

Visualization of organelles and their interactions with other features in the native cell remains a challenge in modern biology. We have introduced cryo-scanning transmission electron tomography (CSTET), which can access 3D volumes on the scale of 1 micron with a resolution of nanometers, making it ideal for this task. Here we introduce two relevant advances: (a) we demonstrate the utility of multi-color super-resolution radial fluctuation light microscopy under cryogenic conditions (cryo-SRRF), and (b) we extend the use of deconvolution processing for dual-axis CSTET data. We show that cryo-SRRF nanoscopy is able to reach resolutions in the range of 100 nm, using commonly available fluorophores and a conventional widefield microscope for cryo-correlative light-electron microscopy. Such resolution aids in precisely identifying regions of interest before tomographic acquisition and enhances precision in localizing features of interest within the 3D reconstruction. Dual-axis CSTET tilt series data and application of entropy regularized deconvolution during post-processing results in close-to-isotropic resolution in the reconstruction without averaging. The integration of cryo-SRRF with deconvolved dual-axis CSTET provides a versatile workflow for studying unique objects in a cell.


Assuntos
Microscopia Crioeletrônica , Células Eucarióticas , Microscopia Eletrônica de Transmissão , Linhagem Celular , Humanos , Células Eucarióticas/ultraestrutura , Fluxo de Trabalho
4.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G334-G346, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489865

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) is the most abundant hepatocyte mitochondrial matrix protein. Hypoosmotic stress increases CPS1 release in isolated mouse hepatocytes without cell death. We hypothesized that increased CPS1 release during hypoosmosis is selective and associates with altered mitochondrial morphology. Both ex vivo and in vivo models were assessed. Mouse hepatocytes and livers were challenged with isotonic or hypoosmotic (35 mosM) buffer. Mice were injected intraperitoneally with water (10% body weight) with or without an antidiuretic. Mitochondrial and cytosolic fractions were isolated using differential centrifugation, then analyzed by immunoblotting to assess subcellular redistribution of four mitochondrial proteins: CPS1, ornithine transcarbamylase (OTC), pyrroline-5-carboxylate reductase 1 (PYCR1), and cytochrome c. Mitochondrial morphology alterations were examined using electron microscopy. Hypoosmotic treatment of whole livers or hepatocytes led to preferential or increased mitochondrial release, respectively, of CPS1 as compared with two mitochondrial matrix proteins (OTC/PYCR1) and with the intermembrane space protein, cytochrome c. Mitochondrial apoptosis-induced channel opening using staurosporine in hepatocytes led to preferential CPS1 and cytochrome c release. The CPS1-selective changes were accompanied by dramatic alterations in ultrastructural mitochondrial morphology. In mice, hypoosmosis/hyponatremia led to increased liver vascular congestion and increased CPS1 in bile but not blood, coupled with mitochondrial structural alterations. In contrast, isotonic increase of intravascular volume led to a decrease in mitochondrial size with limited change in bile CPS1 compared with hypoosmotic conditions and absence of the hypoosmosis-associated histological alterations. Taken together, hepatocyte CPS1 is selectively released in response to hypoosmosis/hyponatremia and provides a unique biomarker of mitochondrial injury.NEW & NOTEWORTHY Exposure of isolated mouse livers, primary cultured hepatocytes, or mice to hypoosmosis/hyponatremia conditions induces significant mitochondrial shape alterations accompanied by preferential release of the mitochondrial matrix protein CPS1, a urea cycle enzyme. In contrast, the intermembrane space protein, cytochrome c, and two other matrix proteins, including the urea cycle enzyme ornithine transcarbamylase, remain preferentially retained in mitochondria. Therefore, hepatocyte CPS1 manifests unique mitochondrial stress response compartmentalization and is a sensitive sensor of mitochondrial hypoosmotic/hyponatremic injury.


Assuntos
Hiponatremia , Hepatopatias , Animais , Camundongos , Carbamoil-Fosfato/metabolismo , Ornitina Carbamoiltransferase/metabolismo , Citocromos c/metabolismo , Hiponatremia/metabolismo , Hiponatremia/patologia , Hepatócitos/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Hepatopatias/metabolismo , Mitocôndrias/metabolismo , Ureia/metabolismo
5.
J Korean Med Sci ; 38(16): e128, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37096311

RESUMO

BACKGROUND: Preeclampsia (PE) is known to arise from insufficient trophoblast invasion as uterine spiral arteries lack remodeling. A significant reduction in placental perfusion induces an ischemic placental microenvironment due to reduced oxygen delivery to the placenta and fetus, leading to oxidative stress. Mitochondria are involved in the regulation of cellular metabolism and the production of reactive oxygen species (ROS). NME/NM23 nuceloside diphosphate kinase 4 (NME4) gene is known to have the ability to supply nucleotide triphosphate and deoxynucleotide triphosphate for replication and transcription of mitochondria. Our study aimed to investigate changes in NME4 expression in PE using trophoblast stem-like cells (TSLCs) from induced pluripotent stem cells (iPSCs) as a model of early pregnancy and peripheral blood mononuclear cells (PBMNCs) as a model of late preterm pregnancy. METHODS: Transcriptome analysis using TSLCs was performed to identify the candidate gene associated with the possible pathophysiology of PE. Then, the expression of NME4 associated with mitochondrial function, p53 associated with cell death, and thioredoxin (TRX) linked to ROS were investigated through qRT-PCR, western blotting and deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL) assay. RESULTS: In patients with PE, NME4 was significantly downregulated in TSLCs but upregulated in PBMNCs. p53 was shown to be upregulated in TSLCs and PBMNCs of PE. In addition, western blot analysis confirmed that TRX expression had the tendency to increase in TSLCs of PE. Similarly, TUNEL analysis confirmed that the dead cells were higher in PE than in normal pregnancy. CONCLUSION: Our study showed that the expression of the NME4 differed between models of early and late preterm pregnancy of PE, and suggests that this expression pattern may be a potential biomarker for early diagnosis of PE.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Recém-Nascido , Gravidez , Humanos , Feminino , Trofoblastos/metabolismo , Placenta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Leucócitos Mononucleares/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo
6.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628359

RESUMO

Maintaining a robust, stable source of energy for doing chemical and physical work is essential to all living organisms. In eukaryotes, metabolic energy (ATP) production and consumption occurs in two separate compartments, the mitochondrial matrix and the cytosol. As a result, understanding eukaryotic metabolism requires knowledge of energy metabolism in each compartment and how metabolism in the two compartments is coordinated. Central to energy metabolism is the adenylate energy state ([ATP]/[ADP][Pi]). ATP is synthesized by oxidative phosphorylation (mitochondrial matrix) and glycolysis (cytosol) and each compartment provides the energy to do physical work and to drive energetically unfavorable chemical syntheses. The energy state in the cytoplasmic compartment has been established by analysis of near equilibrium metabolic reactions localized in that compartment. In the present paper, analysis is presented for energy-dependent reactions localized in the mitochondrial matrix using data obtained from both isolated mitochondria and intact tissues. It is concluded that the energy state ([ATP]f/[ADP]f[Pi]) in the mitochondrial matrix, calculated from the free (unbound) concentrations, is not different from the energy state in the cytoplasm. Corollaries are: (1) ADP in both the cytosol and matrix is selectively bound and the free concentrations are much lower than the total measured concentrations; and (2) under physiological conditions, the adenylate energy states in the mitochondrial matrix and cytoplasm are not substantially different.


Assuntos
Trifosfato de Adenosina , Eucariotos , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Citosol/metabolismo , Metabolismo Energético , Eucariotos/metabolismo
7.
J Biol Chem ; 294(50): 19034-19047, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31676684

RESUMO

Acyl-CoA thioesterases (Acots) hydrolyze fatty acyl-CoA esters. Acots in the mitochondrial matrix are poised to mitigate ß-oxidation overload and maintain CoA availability. Several Acots associate with mitochondria, but whether they all localize to the matrix, are redundant, or have different roles is unresolved. Here, we compared the suborganellar localization, activity, expression, and regulation among mitochondrial Acots (Acot2, -7, -9, and -13) in mitochondria from multiple mouse tissues and from a model of Acot2 depletion. Acot7, -9, and -13 localized to the matrix, joining Acot2 that was previously shown to localize there. Mitochondria from heart, skeletal muscle, brown adipose tissue, and kidney robustly expressed Acot2, -9, and -13; Acot9 levels were substantially higher in brown adipose tissue and kidney mitochondria, as was activity for C4:0-CoA, a unique Acot9 substrate. In all tissues, Acot2 accounted for about half of the thioesterase activity for C14:0-CoA and C16:0-CoA. In contrast, liver mitochondria from fed and fasted mice expressed little Acot activity, which was confined to long-chain CoAs and due mainly to Acot7 and Acot13 activities. Matrix Acots occupied different functional niches, based on substrate specificity (Acot9 versus Acot2 and -13) and strong CoA inhibition (Acot7, -9, and -13, but not Acot2). Interpreted in the context of ß-oxidation, CoA inhibition would prevent Acot-mediated suppression of ß-oxidation, while providing a release valve when CoA is limiting. In contrast, CoA-insensitive Acot2 could provide a constitutive siphon for long-chain fatty acyl-CoAs. These results reveal how the family of matrix Acots can mitigate ß-oxidation overload and prevent CoA limitation.


Assuntos
Acil Coenzima A/metabolismo , Mitocôndrias/enzimologia , Palmitoil-CoA Hidrolase/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Palmitoil-CoA Hidrolase/deficiência , Palmitoil-CoA Hidrolase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Tioléster Hidrolases/metabolismo
8.
Neurochem Res ; 45(4): 915-927, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997103

RESUMO

The nucleus-encoded 17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) regulates cyclophilin D (cypD) in the mitochondrial matrix. CypD regulates opening of mitochondrial permeability transition pores. Both mechanisms may be affected by amyloid ß peptides accumulated in mitochondria in Alzheimer's disease (AD). In order to clarify changes occurring in brain mitochondria, we evaluated interactions of both mitochondrial proteins in vitro (by surface plasmon resonance biosensor) and detected levels of various complexes of 17ß-HSD10 formed in vivo (by sandwich ELISA) in brain mitochondria isolated from the transgenic animal model of AD (homozygous McGill-R-Thy1-APP rats) and in cerebrospinal fluid samples of AD patients. By surface plasmon resonance biosensor, we observed the interaction of 17ß-HSD10 and cypD in a direct real-time manner and determined, for the first time, the kinetic parameters of the interaction (ka 2.0 × 105 M1s-1, kd 5.8 × 104 s-1, and KD 3.5 × 10-10 M). In McGill-R-Thy1-APP rats compared to controls, levels of 17ß-HSD10-cypD complexes were decreased and those of total amyloid ß increased. Moreover, the levels of 17ß-HSD10-cypD complexes were decreased in cerebrospinal fluid of individuals with AD (in mild cognitive impairment as well as dementia stages) or with Frontotemporal lobar degeneration (FTLD) compared to cognitively normal controls (the sensitivity of the complexes to AD dementia was 92.9%, that to FTLD 73.8%, the specificity to AD dementia equaled 91.7% in a comparison with the controls but only 26.2% with FTLD). Our results demonstrate the weakened ability of 17ß-HSD10 to regulate cypD in the mitochondrial matrix probably via direct effects of amyloid ß. Levels of 17ß-HSD10-cypD complexes in cerebrospinal fluid seem to be the very sensitive indicator of mitochondrial dysfunction observed in neurodegeneration but unfortunately not specific to AD pathology. We do not recommend it as the new biomarker of AD.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Doença de Alzheimer/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , 17-Hidroxiesteroide Desidrogenases/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Humanos , Cinética , Masculino , Mitocôndrias/metabolismo , Ratos Transgênicos , Ratos Wistar , Ressonância de Plasmônio de Superfície
9.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419257

RESUMO

In early stages of Alzheimer's disease (AD), amyloid beta (Aß) accumulates in the mitochondrial matrix and interacts with mitochondrial proteins, such as cyclophilin D (cypD) and 17ß-hydroxysteroid dehydrogenase 10 (17ß-HSD10). Multiple processes associated with AD such as increased production or oligomerization of Aß affect these interactions and disbalance the equilibrium between the biomolecules, which contributes to mitochondrial dysfunction. Here, we investigate the effect of the ionic environment on the interactions of Aß (Aß1-40, Aß1-42) with cypD and 17ß-HSD10 using a surface plasmon resonance (SPR) biosensor. We show that changes in concentrations of K+ and Mg2+ significantly affect the interactions and may increase the binding efficiency between the biomolecules by up to 35% and 65% for the interactions with Aß1-40 and Aß1-42, respectively, in comparison with the physiological state. We also demonstrate that while the binding of Aß1-40 to cypD and 17ß-HSD10 takes place preferentially around the physiological concentrations of ions, decreased concentrations of K+ and increased concentrations of Mg2+ promote the interaction of both mitochondrial proteins with Aß1-42. These results suggest that the ionic environment represents an important factor that should be considered in the investigation of biomolecular interactions taking place in the mitochondrial matrix under physiological as well as AD-associated conditions.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/genética , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Peptidil-Prolil Isomerase F/química , Peptidil-Prolil Isomerase F/genética , Humanos , Íons/química , Mitocôndrias/química , Proteínas Mitocondriais/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética
10.
Molecules ; 23(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208599

RESUMO

Mitochondria are the energy-producing organelles of cells. Mitochondrial dysfunctions link to various syndromes and diseases including myoclonic epilepsy and ragged-red fiber disease (MERRF), Leigh syndrome (LS), and Leber hereditary optic neuropathy (LHON). Primary mitochondrial diseases often result from mutations of mitochondrial genomes and nuclear genes that encode the mitochondrial components. However, complete intracellular correction of the mutated genetic parts relevant to mitochondrial structures and functions is technically challenging. Instead, there have been diverse attempts to provide corrected genetic materials with cells. In this review, we discuss recent novel physical, chemical and biological strategies, and methods to introduce genetic cargos into mitochondria of eukaryotic cells. Effective mitochondria-targeting gene delivery systems can reverse multiple mitochondrial disorders by enabling cells to produce functional mitochondrial components.


Assuntos
Terapia Genética/métodos , Doenças Mitocondriais/terapia , Animais , Técnicas de Transferência de Genes , Humanos , Doenças Mitocondriais/genética , Terapia de Alvo Molecular , Mutação
11.
J Inherit Metab Dis ; 40(5): 745-747, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28409271

RESUMO

Clinical finding of cutis laxa, characterized by wrinkled, redundant, sagging, nonelastic skin, is of growing significance due to its occurrence in several different inborn errors of metabolism (IEM). Metabolic cutis laxa results from Menkes syndrome, caused by a defect in the ATPase copper transporting alpha (ATP7A) gene; congenital disorders of glycosylation due to mutations in subunit 7 of the component of oligomeric Golgi (COG7)-congenital disorders of glycosylation (CDG) complex; combined disorder of N- and O-linked glycosylation, due to mutations in ATPase H+ transporting V0 subunit a2 (ATP6VOA2) gene; pyrroline-5-carboxylate reductase 1 deficiency; pyrroline-5-carboxylate synthase deficiency; macrocephaly, alopecia, cutis laxa, and scoliosis (MACS) syndrome, due to Ras and Rab interactor 2 (RIN2) mutations; transaldolase deficiency caused by mutations in the transaldolase 1 (TALDO1) gene; Gerodermia osteodysplastica due to mutations in the golgin, RAB6-interacting (GORAB or SCYL1BP1) gene; and mitogen-activated pathway (MAP) kinase defects, caused by mutations in several genes [protein tyrosine phosphatase, non-receptor-type 11 (PTPN11), RAF, NF, HRas proto-oncogene, GTPase (HRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), MEK1/2, KRAS proto-oncogene, GTPase (KRAS), SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2), leucine rich repeat scaffold protein (SHOC2), NRAS proto-oncogene, GTPase (NRAS), and Raf-1 proto-oncogene, serine/threonine kinase (RAF1)], which regulate the Ras-MAPK cascade. Here, we further expand the list of inborn errors of metabolism associated with cutis laxa by describing the clinical presentation of a 17-month-old girl with Leigh-like syndrome due to enoyl coenzyme A hydratase, short chain, 1, mitochondria (ECHS1) deficiency, a mitochondrial matrix enzyme that catalyzes the second step of the beta-oxidation spiral of fatty acids and plays an important role in amino acid catabolism, particularly valine.


Assuntos
Cútis Laxa/genética , Enoil-CoA Hidratase/deficiência , Doença de Leigh/genética , Feminino , Humanos , Lactente , Proto-Oncogene Mas
12.
Biochem Biophys Res Commun ; 480(3): 302-308, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27746179

RESUMO

In mammals, three types of intracellular phospholipase A1 (iPLA1) enzymes have been characterized and are thought to be involved in various cellular processes such as phospholipid metabolism, organelle biogenesis, and membrane trafficking. In this study we analyzed the unique iPLA1-like protein, Yor022c, in the budding yeast Saccharomyces cerevisiae. By the mass spectrometry analysis, we demonstrate that Yor022c is actually a phospholipase displaying sn-1-specific activity toward phosphatidylcholine, phosphatidylethanolamine, and phosphatidic acid, generating 2-acyl lysophospholipids. GFP-fused Yor022c co-stained with the mitochondrial dye MitoTracker, indicating that, unlike its mammalian counterparts, it is a mitochondrial protein. Further biochemical fractionation experiment combined with protease sensitivity assay showed that Yor022c localizes to the mitochondrial matrix. Thus Yor022c is the first PLA1 putatively involved in the maintenance of sn-1 acyl chains of phospholipids in the mitochondrial inner membrane.


Assuntos
Fosfolipases A1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ativação Enzimática , Mitocôndrias , Saccharomyces cerevisiae/ultraestrutura , Distribuição Tecidual
13.
J Mol Cell Cardiol ; 61: 2-10, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23608603

RESUMO

In the heart, intracellular Na(+) concentration ([Na(+)]i) is a key modulator of Ca(2+) cycling, contractility and cardiac myocyte metabolism. Several Na(+) transporters are electrogenic, thus they both contribute to shaping the cardiac action potential and at the same time are affected by it. [Na(+)]i is controlled by the balance between Na(+) influx through various pathways, including the Na(+)/Ca(2+) exchanger and Na(+) channels, and Na(+) extrusion via the Na(+)/K(+)-ATPase. [Na(+)]i is elevated in HF due to a combination of increased entry through Na(+) channels and/or Na(+)/H(+) exchanger and reduced activity of the Na(+)/K(+)-ATPase. Here we review the major Na(+) transport pathways in cardiac myocytes and how they participate in regulating [Na(+)]i in normal and failing hearts. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes."


Assuntos
Insuficiência Cardíaca/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Transporte Biológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
14.
Cells ; 11(24)2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36552873

RESUMO

Ubiquitination is a critical type of post-translational modification in eukaryotic cells. It is involved in regulating nearly all cellular processes in the cytosol and nucleus. Mitochondria, known as the metabolism heart of the cell, are organelles that evolved from bacteria. Using the subcellular compartment-dependent α-complementation, we detect multiple components of ubiquitination machinery as being eclipsed distributed to yeast mitochondria. Ubiquitin conjugates and mono-ubiquitin can be detected in lysates of isolated mitochondria from cells expressing HA-Ub and treated with trypsin. By expressing MTS (mitochondrial targeting sequence) targeted HA-tagged ubiquitin, we demonstrate that certain ubiquitination events specifically occur in yeast mitochondria and are independent of proteasome activity. Importantly, we show that the E2 Rad6 affects the pattern of protein ubiquitination in mitochondria and provides an in vivo assay for its activity in the matrix of the organelle. This study shows that ubiquitination occurs in the mitochondrial matrix by eclipsed targeted components of the ubiquitin machinery, providing a new perspective on mitochondrial and ubiquitination research.


Assuntos
Mitocôndrias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Mitocôndrias/metabolismo , Ubiquitina/metabolismo , Organelas/metabolismo
15.
FEBS J ; 289(22): 7128-7146, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33971087

RESUMO

To ensure correct function, mitochondria have developed several mechanisms of protein quality control (QC). Protein homeostasis highly relies on chaperones and proteases to maintain proper folding and remove damaged proteins that might otherwise form cell-toxic aggregates. Besides quality control, mitochondrial proteases modulate and regulate many essential functions, such as trafficking, processing and activation of mitochondrial proteins, mitochondrial dynamics, mitophagy and apoptosis. Therefore, the impaired function of mitochondrial proteases is associated with various pathological conditions, including cancer, metabolic syndromes and neurodegenerative disorders. This review recapitulates and discusses the emerging roles of two major proteases of the mitochondrial matrix, LON and ClpXP. Although commonly acknowledge for their protein quality control role, recent advances have uncovered several highly regulated processes controlled by the LON and ClpXP connected to mitochondrial gene expression and respiratory chain function maintenance. Furthermore, both proteases have been lately recognized as potent targets for anticancer therapies, and we summarize those findings.


Assuntos
Neoplasias , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Endopeptidases/metabolismo
16.
Cancers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804985

RESUMO

Pyruvate is a key molecule in the metabolic fate of mammalian cells; it is the crossroads from where metabolism proceeds either oxidatively or ends with the production of lactic acid. Pyruvate metabolism is regulated by many enzymes that together control carbon flux. Mitochondrial pyruvate carrier (MPC) is responsible for importing pyruvate from the cytosol to the mitochondrial matrix, where it is oxidatively phosphorylated to produce adenosine triphosphate (ATP) and to generate intermediates used in multiple biosynthetic pathways. MPC activity has an important role in glucose homeostasis, and its alteration is associated with diabetes, heart failure, and neurodegeneration. In cancer, however, controversy surrounds MPC function. In some cancers, MPC upregulation appears to be associated with a poor prognosis. However, most transformed cells undergo a switch from oxidative to glycolytic metabolism, the so-called Warburg effect, which, amongst other possibilities, is induced by MPC malfunction or downregulation. Consequently, impaired MPC function might induce tumors with strong proliferative, migratory, and invasive capabilities. Moreover, glycolytic cancer cells secrete lactate, acidifying the microenvironment, which in turn induces angiogenesis, immunosuppression, and the expansion of stromal cell populations supporting tumor growth. This review examines the latest findings regarding the tumorigenic processes affected by MPC.

17.
Methods Mol Biol ; 2275: 227-245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118041

RESUMO

Genetic mutations and defects in mitochondrial DNA (mtDNA) are associated with certain types of mitochondrial dysfunctions, ultimately resulting in the emergence of a variety of human diseases. To achieve an effective mitochondrial gene therapy, it will be necessary to deliver therapeutic agents to the innermost mitochondrial space (the mitochondrial matrix), which contains the mtDNA pool. We recently developed a MITO-Porter, a liposome-based nanocarrier that delivers cargo to mitochondria via a membrane-fusion mechanism. In this chapter, we discuss the methodology used to deliver bioactive molecules to the mitochondrial matrix using a Dual Function (DF)-MITO-Porter, a liposome-based nanocarrier that delivers it cargo by means of a stepwise process, and an evaluation of mtDNA levels and mitochondrial activities in living cells. We also discuss mitochondrial gene silencing by the mitochondrial delivery of antisense RNA oligonucleotide (ASO) targeting mtDNA-encoded mRNA using the MITO-Porter system.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , RNA Antissenso/farmacologia , RNA Mitocondrial/genética , DNA Mitocondrial/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Inativação Gênica , Células HeLa , Humanos , Lipossomos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Mutação , RNA Antissenso/química , RNA Mitocondrial/efeitos dos fármacos
18.
Biochim Biophys Acta Mol Basis Dis ; 1867(8): 166147, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33865955

RESUMO

The mitochondrial respiratory chain (MRC) complex III (CIII) associates with complexes I and IV (CI and CIV) into supercomplexes. We identified a novel homozygous missense mutation (c.665G>C; p.Gly222Ala) in UQCRC2 coding for structural subunit Core 2 in a patient with severe encephalomyopathy. The structural data suggest that the Gly222Ala exchange might result in an altered spatial arrangement in part of the UQCRC2 subunit, which could impact specific protein-protein interactions. Accordingly, we have found decreased levels of CIII and accumulation of CIII-specific subassemblies comprising MT-CYB, UQCRB, UQCRQ, UQCR10 and CYC1 subunits, but devoid of UQCRC1, UQCRC2, and UQCRFS1 in the patient's fibroblasts. The lack of UQCRC1 subunit-containing subassemblies could result from an impaired interaction with mutant UQCRC2Gly222Ala and subsequent degradation of both subunits by mitochondrial proteases. Indeed, we show an elevated amount of matrix CLPP protease, suggesting the activation of the mitochondrial protein quality control machinery in UQCRC2Gly222Ala fibroblasts. In line with growing evidence, we observed a rate-limiting character of CIII availability for the supercomplex formation, accompanied by a diminished amount of CI. Furthermore, we found impaired electron flux between CI and CIII in skeletal muscle and fibroblasts of the UQCRC2Gly222Ala patient. The ectopic expression of wild-type UQCRC2 in patient cells rescued maximal respiration rate, demonstrating the deleterious effect of the mutation on MRC. Our study expands the phenotypic spectrum of human disease caused by CIII Core protein deficiency, provides insight into the assembly pathway of human CIII, and supports the requirement of assembled CIII for a proper accumulation of CI.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto/genética , Feminino , Fibroblastos/patologia , Homozigoto , Humanos , Músculo Esquelético/patologia
19.
FEBS J ; 287(2): 325-344, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323700

RESUMO

Enzyme-catalyzed proximity labeling (PL) with the engineered ascorbate peroxidase APEX2 is a novel approach to map organelle compartmentalization and protein networks in living cells. Current procedures developed for mammalian cells do not allow delivery of the cosubstrate, biotin-phenol, into living yeast cells. Here, we present a new method based on semipermeabilized yeast cells. Combined with stable isotope labeling by amino acids in cell culture (SILAC), we demonstrate proteomic mapping of a membrane-enclosed and a semiopen compartment, the mitochondrial matrix and the nucleus. APEX2 PL revealed nuclear proteins that were previously not identified by conventional techniques. One of these, the Yer156C protein, is highly conserved but of unknown function. Its human ortholog, melanocyte proliferating gene 1, is linked to developmental processes and dermatological diseases. A first characterization of the Yer156C neighborhood reveals an array of proteins linked to proteostasis and RNA binding. Thus, our approach establishes APEX2 PL as another powerful tool that complements the methods palette for the model system yeast.


Assuntos
Ascorbato Peroxidases/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Ascorbato Peroxidases/química , Núcleo Celular/metabolismo , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Proteínas Mitocondriais/metabolismo , Mapeamento de Interação de Proteínas/normas , Proteômica/normas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
20.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118792, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32621840

RESUMO

Human Mpv17-like protein (M-LPH/Mpv17L) is thought to play a role in minimizing mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage. We have recently demonstrated that, in addition to an increase of mtDNA damage, M-LPH-knockout (M-LPH-KO) in HepG2 cells causes a significant reduction of mitochondrial transcription factor A (TFAM) protein, an essential factor for mtDNA maintenance, along with an increase in its phosphorylation. These intracellular changes suggested an association of M-LPH with the cAMP/PKA signaling pathway, as selective degradation of TFAM by mitochondrial protease is driven by protein kinase A (PKA)-dependent phosphorylation. In the present study, we observed that M-LPH-KO in HepG2 cells caused an increase in the level of mitochondrial cAMP and a reduction of total cellular cyclic nucleotide phosphodiesterase (PDE) activity. In vitro-synthesized M-LPH showed PDE activity, which was inhibited by IBMX, a non-selective inhibitor of PDE. Furthermore, M-LPH-KO promoted PKA-dependent phosphorylation of some mitochondrial proteins. Taken together, the present findings suggest that M-LPH, which has structural features atypical of PDE family members, might be a novel human PDE involved in cAMP/PKA signaling in the mitochondrial matrix.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , DNA Mitocondrial/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Proteínas de Membrana/química , Diester Fosfórico Hidrolases/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa